تعداد نشریات | 50 |
تعداد شمارهها | 1,872 |
تعداد مقالات | 19,702 |
تعداد مشاهده مقاله | 11,528,502 |
تعداد دریافت فایل اصل مقاله | 7,589,788 |
بهبود تجزیه زیستی آلاینده هیدروکربنی بنزوپیرن با استفاده از دستهباکتریایی تولید کننده سورفاکتانت زیستی | ||
آب و خاک | ||
مقاله 7، دوره 33، شماره 4 - شماره پیاپی 66، آبان 1398، صفحه 605-619 اصل مقاله (789.5 K) | ||
نوع مقاله: مقالات پژوهشی | ||
شناسه دیجیتال (DOI): 10.22067/jsw.v0i0.79076 | ||
نویسندگان | ||
سحر سلیمانی1؛ امیر لکزیان* 2؛ امیر فتوت2 | ||
1دانشجوی دکترای بیولوژی گروه علوم خاک، دانشکده کشاورزی، دانشگاه فردوسی مشهد | ||
2استاد گروه علوم خاک، دانشکده کشاورزی، دانشگاه فردوسی مشهد | ||
چکیده | ||
طی سالهای اخیر استفاده از ریزجانداران خاکزی جهت کاهش اثرات مخرب آلایندههای زیستمحیطی همانند نفت و مشتقات آن بسیار مورد توجه قرار گرفته است. تجزیهپذیری و در نتیجه ماندگاری ترکیبات هیدروکربنی در طبیعت، تحت تأثیر عواملی مختلفی است که مهمترین آنها شامل شرایط محیطی، فعالیت تجزیه کنندگی ریزجاندارن، نوع آلاینده و میزان دسترسی زیستی آلاینده برای ریزجاندارن میباشد. عوامل فعال سطحی یا سورفاکتانتها موجب افزایش تحرک و تجزیه زیستی ترکیبات هیدروفوب شده و بنابراین دارای اثر مثبت بر فرآیند زیست پالایی است. از سوی دیگر، علیرغم آنکه تجزیه زیستی هیدروکربنهای پلیآروماتیک فرآیندی بالقوه و طبیعی است، اما ترکیبات چند جزئی و هیدروکربنهایی با وزن مولکولی بالا، جهت تجزیه به بیش از یک گونه میکروبی کارآمد نیاز دارند. در بررسی حاضر با استفاده از روشهای جداسازی و غربالگری، جدایههای توانمند تجزیه کننده آلاینده بنزوپیرن (به عنوان منبع کربنی) و تولید کننده سورفاکتانت زیستی، انتخاب و توانایی جدایههای منفرد و دستهباکتریایی 4 حاصل از آنها بر میزان تجزیه آلاینده در دو محیط محلول و خاک با هم مقایسه شد. نتایج نشان داد که از میان جدایههای حاصل از مرحله جداسازی، دو جدایه AP3 و BM1 به ترتیب با 43 و 40 درصد کاهش میزان کشش سطحی محیط کشت نسبت به شاهد (فاقد تلقیح جدایه) دارای توانایی تولید سورفاکتانت زیستی بودند. بهینهسازی شرایط تولید سورفاکتانت زیستی حاکی از آن بود که جدایههای یاد شده در دمای 35 درجه سانتیگراد، اسیدیته 7 و در حضور قند گلوکز به عنوان منبع کربنی سهلالوصول بیشترین میزان تولید سورفاکتانت زیستی را نشان داده و در مقایسه با شاهد (دمای 25 درجه سانتیگراد، اسیدیته 6 و قند گلوکز با کشش سطحی 42/56 میلینیوتن بر متر) کشش سطحی کمتری (81/30 و 52/31 میلینیوتن بر متر به ترتیب در جدایههای AP3 و BM1) را ایجاد نمودند. تجزیه آلاینده بنزوپیرن در محیط محلول توسط دو جدایه و دستهباکتریایی حاصل از آن نشان داد که بیشترین میزان تجزیه در تیمار تلقیح شده با دستهباکتریایی و در حضور سورفاکتانت زیستی استخراج شده از جدایه AP3 رخ داد. این تیمار سبب تجزیه 3/87 درصد از آلاینده طی دو هفته شد. در حالیکه جدایه BM1 با 6/27 درصد تجزیه آلاینده، کمترین اثر را بر تجزیه بنزوپیرن در محیط محلول داشت. مقایسه تجزیه بنزوپیرن در خاک نیز مشخص کرد که تأثیر دستهباکتریایی بیشتر از جدایه AP3 به تنهایی میباشد. بطوریکه در انتهای 45 روز، غلظت آلاینده در تیمار حاوی دستهجات و سورفاکتانت زیستی صفر و در تیمار تلقیح شده با جدایه AP3 از 150 میلیگرم بر کیلوگرم به 48 میلیگرم بر کیلوگرم رسید. نتایج نشان داد که بعد از 45 روز، جدایه AP3 آلاینده را به میزان 68 درصد و دستهباکتریایی آلاینده را بطور کامل تجزیه نمودند. | ||
کلیدواژهها | ||
بنزوپیرن؛ تجزیه زیستی؛ سورفاکتانت زیستی؛ هیدروکربن | ||
مراجع | ||
1- Bacosa H., Suto K., and Inoue C. 2010. Preferential degradation of aromatic hydrocarbons in kerosene by a microbial consortium. International Biodeterioration and Biodegradation 64: 702–710.
2- Bacosa H.P., Suto K., and Inoue C. 2012. Bacterial community dynamics during the preferential degradation of aromatic hydrocarbons by a microbial consortium. International Biodeterioration and Biodegradation 74: 109-115.
3- Bai N., Wang Sh., Abuduaini R., Zhang M., Zhu X., and Zhao Y. 2017. Rhamnolipid-aided biodegradation of carbendazim by Rhodococcus sp.D-1: Characteristics, products, and phytotoxicity. Science of the Total Environment 590-591: 343-351.
4- Barin R., Talebi M., and Beheshti M. 2014. Fast bioremediation of petroleum-Contaminated soil by consortium of biosurfactant/bioemulsifier producing bacteria. International Journal of Environmental Science and Technology 11(6): 1701-1710.
5- Bezza F.A., and Chirwa E.M.N. 2016. Pyrene biodegradation enhancement potential of Lipopeptide biosurfactant produced by Paenibacillus dendritiformis CN5 strain. Journal of Hazardous Materials 318: 218-227.
6- Bodour A., and Miller-Maier R.M. 1998. Application of a modified drop collapse technique for surfactant quantification and screening of biosurfactant-producing microorganism. Journal of Microbiological Methods 32: 273-280.
7- Bushnell and Haas. 1941. Journal of Bacteriology 41: 653.
8- Chebbi A., Hentati D., Zaghden H., Baccar N., Rezgui F., Chalbi M., Sayadi S., and Chamkha M. 2017. Polycyclic aromatic hydrocarbon degradation and biosurfactant production by a newly isolated Pseudomonas sp. strain from used motor oil-contaminated soil. International Biodeterioration and Biodegradation 122: 128-140.
9- Chen S.Y., Wei Y.H., and Chod J.S. 2007. Repeated pH-salt fed-batch fermentation for rhamnoloipid production with indigenous Pseudomonas aeruginosa S2. Applied Microbiology and Biotechnology 76: 67-74.
10- Das K., and Mukherjee A.K. 2007. Crude petroleum-oil biodegradation efficiencyof Bacillus subtilis and Pseudomonas aeruginosa strains isolated from petroleum oil contaminated soil from North-East India. Bioresource Technology 98: 1339-1345.
11- Das P., Mukherjee S., and Sen R. 2008. Improved bioavailability and biodegradation of a model polyaromatic hydrocarbon by a biosurfactant producing bacterium of marine origin. Chemosphere 72: 1229–1234.
12- Dhote M., Kumar A., and Juwarkar A. 2018. Petroleum contaminated oil sludge degradation by defined consortium: Influence of biosurfactant production. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 88(2): 517- 523.
13- Eriksson M., Sodersten E., Yu Z., Dalhammar G., and Mohn W.W. 2003. Degradation of polycyclic aromatic hydrocarbons at low temperature under aerobic and nitrate-reducing conditions in enrichment cultures from northern soils. Applied and Environmental Microbiology 69: 275-284.
14- Ghazali F.M., Addul Rahman R.N.Z., Salleh A., and Mahiran B. 2004. Biodegradation of hydrocarbons in soil by microbial consortium. International Biodeterioration and Biodegradation 54: 61-67.
15- Hamzah A., Sabturani N., and Radiman. 2013. Screening and optimization of biosurfactant production by the hydrocarbon-degrading bacteria. Sains Malaysiana 42(5): 615-623.
16- Hilyard E.J., Jones-meehan J.M., Spargo B.J., and Hill R.T. 2008. Enrichment, isolation and phylogenetic identification of polycyclic aromatic hydrocarbon-degrading bacteria from Elizabeth river sediments. Applied and Environmental Microbiology 74(4): 1176-1182.
17- Hu X., Wang C., and Wang P. 2015. Optimization and characterization of biosurfactant production from marine Vibrio sp. Strain 3B-2. Frontiers in Microbiology 6: 1-110.
18- Kamyabi A., Nouri H., and Moghimi H. 20117. Synergistic effect of Sarocladium sp. and Cryptococcus sp. co-Culture on crude oil biodegradation and biosurfactant production. Applied Biochemistry and Biotechnology 182(1): 324-334.
19- Kanaly R.A., and Harayama SH. 2000. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. Journal of Bacteriology 182(8): 2050-2067.
20- Larik L.A., Qazi M.A., Phulpoto A.H., Haleem A., Ahmed S., and Kanhar N.A. 2017. Stenotrophomonas maltophilia strain 5DMD: an efficient biosurfactant‑producing bacterium for biodegradation of diesel oil and used engine oil. International Journal of Environmental Science and Technology 1-10.
21- Li L., Li Q., Li F., Shi Q., Yu B., Liu F., and Xu P. 2006. Degradation of carbazole and its derivatives by a Pseudomonas sp. Applied Microbiology and Biotechnology 73: 941-948.
22- Lily M.K., Bahuguna A., Dangwal K., and Garg V. 2009. Degradation of Benzo (a) Pyrene by novel strain Bacillus subtilis BMT4i (MTCC 9447). Brazilian Journal of Microbiology 40: 884-89.
23- Lotfabad T.B., Sourian M., Roostazad R., Najafabadi A.R., Adelzadeh M.R., and Noghabi K.A. 2009. An efficient biosurfactant-producing bacterium Pseudomonas aeruginosa MR01, isolated from oil excavation areas in south of Iran. Colloids and Surfaces B: Biointerfaces 69: 183-193.
24- Mnif I., Rihab S., and Dhouha Gh. 2017. Application of bacterial biosurfactant for enhanced removal and biodegradation of disel oil in soil using a newly isolated consortium. Process Safety and Environmental Protection 109: 72-81.
25- Mnif I., Sahnoun R., and Ellouze-Chaabouni S. 2013. Evaluation of B. subtilis SPB1 biosurfactants potency for diesel-contaminated soil washing: optimization of oil desorption using Taguchi design. Environmental Sscience and Pollution Research International 2: 851-861.
26- Mnif I., Sahnoun R., Ellouze-Chaabouni S., and Ghribi D. 2013a. Evaluation of B. subtilis SPB1 biosurfactants' potency for diesel-contaminated soil washing: optimization of oil desorption using Taguchi design. Environmental Science and Pollution Research 21(2): 851-861.
27- Mohanty S., and Mukherji S. 2013. Surfactant aided biodegradation of NAPLs by Burkholderia multivorans: comparison between Triton X-100 and rhamnolipid JBR-515. Colloids and Surfaces B: Biointerfaces102: 644–652.
28- Montagnolli R.N., Lopes P.R.M., and Bidoia E.D. 2015 Assessing Bacillus subtilis biosurfactant effects on the biodegradation of petroleum products. Environmental Monitoring and Assessment 187: 4116-4133.
29- Mukherjee A.K., and Bordoloi N.K. 2012. Biodegradation of benzene, toluene, and xylene (BTX) in liquid culture and in soil by Bacillus subtilis and Pseudomonas aeruginosa strains and a formulated bacterial consortium. Environmental Science and Pollution Research 19: 3380-3388.
30- Owsianiak M., Chrzanowski L., Szulc A., Staniewski J., Olszanowski A., Olejnik-Schimdt A.K., and Heipieper H. 2009. Biodegradation of diesel/biodiesel blends by consortium of hydrocarbon degraders: Effect of the type of blend and addition of biosurfactants. Bioresource Technology 100: 1497-1500.
31- Parvaresh B.V., Soniyamby A.R., Mariappan C., Kavithakumari P., Palaniswamy M., and Lalitha S. 2011. Biosurfactant production by Psedomonas Sp from soil using whey as carbon source. New York Science Journal 4(4): 100-103.
32- Patowary K., Patowary R., Kalita M.C., and Deka S. 2016. Development of an Efficient Bacterial Consortium for the Potential Remediation Consortium for potential remediation of hydrocarbons from contaminated sites. Frontiers in Microbiology 7: 1092.
33- Patowary R., patowary K., Kalita M.GH., and Deka S. 2018. Application of biosurfactant for enhancement of bioremediation process of crude oil contaminated soil. International Biodeterioration and Biodegradation 129: 50-60.
34- Pereira J.F.B., Gudina E.J., Costa R., Vitorino R., Teixeira J.A., Coutinho J.A.P., et al. 2013. Optimization and characterization of biosurfactant production by Bacillus subtilis isolates towards microbial enhanced oil recovery applications. Fuel 111: 259-68.
35- Pugazhendi A., Qari H., Al-Badry Basahi J.M., Godon J.J. and Dhavamani J. 2017. Role of a halothermophilic bacterial consortium for the biodegradation of PAHs and the treatment of petroleum wastewater at extreme conditions. International Biodeterioration and Biodegradation. 121: 44-54.
36- Robert M., Mercade M.E., Bosch M.P., Parra J.L., Espuny M.J., Manresa M.A., and Guinea J.1989. Effect of the carbon source on Biosurfactant Production by Psuedomonas aeruginosa 44T1. Biotechnology Letters 11: 871-874.
37- Sathishkumar M., Binupriya A. R., Baik S.H., and Yun S.E. 2008. Biodegradation of crude oil by individual bacterial strains and a mixed bacterial consortium isolated from hydrocarbon contaminated areas. Clean 36: 92-96.
38- Singh G.B., Gupta S., and Gupta N. 2013. Carbazole degradation and biosurfactant production by newly isolated Pseudomonas sp. strain GBS.5. International Biodeterioration and Biodegradation 84: 35-43.
39- Srikanth Reddy M., Naresh B., Leela T., Prashanthi M., Madhusudhan N.CH., Dhanasri G., and Devi P. 2010. Biodegradation of phenanthrene with biosurfactant production by a new strain of Brevibacillus sp. Bioresource Technology 101: 7980-7983.
40- Tzintzun-Camacho O., Loera O., Ramirez-saad H.C., and Gutierrez-Rjas M. 2012. Comparison of mechanisms of hexadecane uptake among pure and mixed cultures derived from a bacterial consortium. International Biodeterioration and Biodegradation 70: 1-7.
41- Urum K., and Pekdemir T. 2004. Evaluation of biosurfactants for crude oil contaminated soil washing. Chemosphere 57: 1139-1150.
42- Viisimaa M., Karpenko O., Novikov V., Trapido M., and Goi A. 2013. Influence of biosurfactant on combined chemical-biological treatment of PCB-contaminated soil. Chemical Engineering Journal 220: 352–359.
43- Wongwongsee W., Chareanpat P., and Pinyakong O. 2013. Abilities and genes for PAH biodegradation of bacteria isolated from mangrove sediments from the central of Thailand. Marine Pollution Bulletin 74: 95-104.
44- Wu J.Y., Yeh K.L., Lu W.B., Lin C.L., and Chang J.S. 2008. Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-contaminated site. Bioresource Technology 99:1157–1164.
45- Xu R., Zhang Z., Wang L., Yin N., and Zhan X. 2018. Surfactant-enhanced biodegradation of crude oil by mixed bacterial consortium in contaminated soil. Environmental Science and Pollution Research 15: 14437-14446.
46- Yin H., Qjang J., Jia Y., Ye J., Peng H., Qin H., Zhang N., and He B. 2009. Characteristics of biosurfactant produced by Pseudomonas aeruginosa S6 isolated from oil-containing wastewater. Process Biochemistry 44: 302-308. | ||
آمار تعداد مشاهده مقاله: 689 تعداد دریافت فایل اصل مقاله: 280 |