تعداد نشریات | 49 |
تعداد شمارهها | 1,845 |
تعداد مقالات | 19,508 |
تعداد مشاهده مقاله | 9,292,263 |
تعداد دریافت فایل اصل مقاله | 6,525,006 |
تعیین بهرهوری آب و نیاز آبی خیار گلخانهای در قزوین | ||
آب و خاک | ||
مقاله 2، دوره 33، شماره 6 - شماره پیاپی 68، اسفند 1398، صفحه 811-822 اصل مقاله (1.12 M) | ||
نوع مقاله: مقالات پژوهشی | ||
شناسه دیجیتال (DOI): 10.22067/jsw.v33i6.69882 | ||
نویسندگان | ||
رقیه نجفی پور؛ هادی رمضانی اعتدالی* ؛ بیژن نظری | ||
دانشگاه بین المللی امام خمینی (ره)، قزوین | ||
چکیده | ||
کشتهای گلخانهای نقش ویژهای در تولید محصولات کشاورزی دارند. آگاهی از میزان دقیق نیاز آبی در برنامهریزی توسعه گلخانهها از اهمیت زیادی برخوردار است. هدف از این پژوهش ارزیابی و ارایه مدلی برای برآورد تبخیر و تعرق خیار در شرایط گلخانهای با استفاده از دادههای هواشناسی و مطالعه بهرهوری آب در تولید این محصول در قزوین است. در طی تحقیق، تغییرات دما، رطوبت، تشعشع، ارتفاع گیاه و رطوبت خاک اندازهگیری شد. با بررسی مدلهای ریاضی مختلف، یک مدل توانی با پارامترهای دما، رطوبت نسبی و ارتفاع گیاه و با ضریب همبستگی 86/0 به عنوان بهترین مدل برای برآورد تبخیر و تعرق خیار گلخانهای انتخاب شد. همچنین مقایسه تبخیر و تعرق اندازهگیری شده با روابط متداول تعیین تبخیر و تعرق نشان داد که در سطح اطمینان 99 درصد بین تبخیر و تعرق اندازهگیری شده و تبخیر و تعرق برآورد شده با روش فائو پنمن مانتیث همبستگی وجود دارد. روش فائو پنمن مانتیث با ضریب تبیین 42/0 از دقت بیشتری نسبت به سایر روشها برخوردار بوده و روش بلانی کریدل اصلاح شده با ضریب تبیین 24/0 کمترین دقت را دارد. همچنین بهرهوری آب در گلخانههای کشت خیار فعال در استان قزوین مورد بررسی قرار گرفت. نتایج نشان داده بهرهوری آب خیار در گلخانهها از 23/9 تا 44/22 کیلوگرم بر متر مکعب متغیر است. این دامنه تغییرات مساله اهمیت مدیریت و بهرهبرداری در ارتقای بهرهوری آب در گلخانهها را خاطر نشان میسازد. طبق برآوردهای انجام شده در این تحقیق اگر میزان تولید فعلی خیار در استان در فضای آزاد در گلخانهها کشت شود، به 117 هکتار گلخانه نیاز خواهد داشت و با این عمل نزدیک به 15 میلیون متر مکعب آب صرفهجویی خواهد شد. با بررسی سایر جوانب اقتصادی و اجتماعی توسعه گلخانهها میتواند در تسکین مشکلات کم آبی در استان کمکساز باشد. | ||
کلیدواژهها | ||
تبخیروتعرق؛ فائو-پن من-مانتیث؛ کم آبیاری؛ بهره وری | ||
مراجع | ||
1- Abedi-Koupai J., Amiri M.J., and Eslamian S.S. 2009. Comparison of artificial neural network and physically based models for estimating of reference evapotranspiration in greenhouse. Aust. Journal Basic Appl. Sci. 3: 2528-2535.
2- Aly A.A., Al-Omran A.M., and Khasha A.A. 2015. Water management for cucumber: Greenhouse experiment in Saudi Arabia and modeling study using SALTMED model. Journal of Soil and Water Conservation 70(1): 1-11.
3- Asadi R., and Karandish F. 2016. Influence of irrigation management and drip irrigation laterlas on water use, yield and net benefits in greenhouse cucumber production. Iranian Journal of Soil and Water Research 47(1): 13-24. (In Persian)
4- Babtista J.F., Bailey B.J., and Meneses J.F. 2005. Measuring and modeling transpiration versus evapotranspiration of a tomato crop grown on soil in a Mediterranean greenhouse. Acta Horticulturae 691: 313–319. International Symposiom on Arid Region Soils, 21-24 Sep, Izmir, Turkey.
5- Baille A. 1994. Principles and methods for predicting crop water requirement in greenhouse environments. INRA-CIHEAM Cahiers Options Mediterraneennes 31: 177-187.
6- Blanco F.F., and Folegatti M.V. 2003. Evapotranspiration and crop coefficient of cucumber in greenhouse.Revista Brasileria de Engenharia Agricola e Ambiental 7(2): 285-291.
7- Buttaro D., Santamaria P., Signore A., Cantorea V., Boari F., Francesco F., Montesano F., and Parente A. 2015. Irrigation Management of Greenhouse Tomato and Cucumber Using Tensiometer: Effects on Yield, Quality and Water Use. Agriculture and Agricultural Science Procedia 4: 440–444.
8- Chartzoulakis K., and Drosos N. 1995. Irrigation requirements of greenhouse vegetables in Crete. INRA-CIHEAM Cahiers Options Mediterraneennes 31: 215-221.
9- Eliad G. 1988. Irrigation of greenhouse grown cucumbers. Journal of Horticultural Science 63(2): 235-239.
10- Harmanto Salokhe V.M., Babel M.S., and Tantau H.J. 2005. Water requirement of drip irrigated tomatoes grown in greenhouse in tropical environment. Agricultural Water Management 71: 225-242.
11- Hashem FA., Medany MA., Abd ElMoniem EM., and Abdallah MMF. 2011. Influence of green-house cover on potential evapotranspiration and cucumber water requirements. Annals of Agricultural Sciences 56(1): 49-55.
12- http://www.qazvin.ir/web/guest/14......(10/9/94)
13- Judah OM., and Rushdi Y. 1985. Yield response of cucumber to various levels of applied water under plastic houses in the Jordan valley. Dirasat Agricultural Science 12: 99-111.
14- Karimi N., Sadraddini SAA., Nazemi AH., Farsadizadeh D., Hossienzadeh Dalir A., and Dehghani F. 2010. Effects of Deficit Irrigation on Yield and Growth of Greenhouse Cucumber. Water and Soil Science 1(20): 15-25. (In Persian with English Abstract)
15- Kirda C., Cetin M., Dasgan Y., Topcu S., Kaman H., Ekici B., Derici MR., and Ozguven AI. 2004. Yield response of greenhouse grown tomato to partial root drying and conventional deficit irrigation. Agricultural Water Management 69: 191-201.
16- Kirda C. 1998. Evapotranspiration Measurments of Greenhouse Grown Tomato, Melon and Cucumber.
17- Liang X., Gao Y., Zhang X., Tian Y., and Zhang Z. 2014. Effect of Optimal Daily Fertigation on Migration of Water and Salt in Soil, Root Growth and Fruit Yield of Cucumber (Cucumis sativus L.) in Solar-Greenhouse. PLoS ONE 9(1): e86975. doi:10.1371/journal.pone.0086975
18- Litago G., Baptista F.J., Meneses J.F., Navas L.M., Bailey B.J., and Sanchez- Giron V. 2005. Statistical modelling of the microclimate in a naturally ventilated greenhouse. Biosystems Engineering 92(3): 365-381.
19- Lorenzo P., Medrana E., and Sanchez M.C. 1998. Greenhouse crop transpiration: an implement to soilless irrigation management. Acta Horticulturae 458: 113-119.
20- Mameli M.G., Sirigu A., Soddu A., Chessa F., and Meloni S. 2004. The use of microlysimeters for the measurement of ETM (maximum evapotranspiration) on camone tomato. Acta Hortic. 664: 377-382.
21- Mao X., Liu M., Wang X., Liu C., Hou Z., and Shi J. 2003. Effects of deficit irrigation on yield and water use of greenhouse grown cucumber in the North China Plain. Agricultural Water Management 61: 219-228.
22- Mazahreh N., Nejatian A., and Mousa M. 2015. Effect of different growing Medias on Cucumber Production and Water Productivity in Soilless Culture under UAE Conditions. Merit Research Journal of Agricultural Science and Soil Sciences 3(9): 131-138.
23- Medrano E., Lorenzo P., Sa´nchez-Guerrero M.C., and Montero J.I. 2005. Evaluation and modelling of greenhouse cucumber-crop transpiration under high and low radiation conditions. Scientia Horticulturae 105: 163-175.
24- Molden D. 1997. Accounting for water use and productivity. SWIM Paper 1. International Irrigation Management Institute, Colombo, Sri Lanka. 16 pp.
25- MÖller M., Tanny J., Li Y., and Cohen S. 2004. Measuring and predicting evapotranspiration in an insect-proof screenhouse. Agricultural and Forest Meteorology 127: 35-51.
26- Moslehi Sh., Najafi P., Tabatabaei SH., and Nourmahnad N. 2011. Effect of Soil Moisture Stress on Yield and Growth Indexes of Greenhouse Cucumber. Journal of Water and Soil 25(4): 770-775. (In Persian with English Abstract)
27- Salih A.M., and Sendi U. 1985. evapotranspiration under extremely arid environment. Journal Irrigation Drainge Engineering 110(3): 289-303.
28- Van Bavel C.H.M. 1967. Lysimeter measurments of evapotranspiration rates in the eastern states. Soil. Sci. Soc. Am. Proc. 25: 138-141.
29- Xuesen M., Mengyn L., and XinyuanW. 2003. Effectof deficit irrigation on yield and water use of greenhouse grown cucumber in the North China Plain Agricultural Water Management 61: 219-228.
30- Yang X., Short T.H., Fox R.D., and Bauerle W.L. 1990. Transpiration, leaf temperature and stomatal resistance of a greenhouse cucumber crop. Agricultural and Forest Meteorology 51: 197-209. | ||
آمار تعداد مشاهده مقاله: 620 تعداد دریافت فایل اصل مقاله: 348 |