تعداد نشریات | 49 |
تعداد شمارهها | 1,777 |
تعداد مقالات | 18,925 |
تعداد مشاهده مقاله | 7,773,731 |
تعداد دریافت فایل اصل مقاله | 5,065,251 |
کارایی نیتریلوتری استیک اسید در آبشویی و پالایش کادمیوم از خاک توسط گیاه ذرت | ||
آب و خاک | ||
مقاله 6، دوره 34، شماره 3 - شماره پیاپی 71، شهریور 1399، صفحه 593-608 اصل مقاله (1.01 M) | ||
نوع مقاله: مقالات پژوهشی | ||
شناسه دیجیتال (DOI): 10.22067/jsw.v34i3.78046 | ||
نویسندگان | ||
نرگس محراب ![]() | ||
دانشگاه شهیدچمران اهواز | ||
چکیده | ||
با توجه به پیامدهای آلودگی فلزات سنگین در محیط زیست، آلودگیزدایی این فلزات از اهمیت بالایی برخوردار است. در این تحقیق کارایی کلاتکننده نیتریلوتریاستیکاسید (NTA) بر آبشویی کادمیوم و جذب آن توسط گیاه ذرت در یک خاک آلوده در آزمایشی گلخانهای بررسی گردید. در این مطالعه از سه سطح کادمیوم (0، 25 و 50 میلیگرم بر کیلوگرم خاک) و سه سطح کلات NTA (0، 15 و 30 میلیمول در لیتر در گلدان 8 کیلوگرمی) در خاکی با بافت لومی در کشت و عدم کشت گیاه ذرت و تحت شرایط سه دور آبیاری استفاده گردید. NTA طی سه مرحله بصورت محلول به گلدانها اضافه گردید. نتایج نشان داد که با افزایش سطح آلودگی کادمیوم و مقدار NTA مصرفی، میزان کادمیوم زهآب و همچنین جذب کادمیوم توسط گیاه ذرت افزایش یافت. سطوح مختلف کادمیوم و NTA در دور اول آبشویی اختلاف معنیداری در کادمیوم شسته شده نشان دادند و در دو دور بعدی تفاوت قابل ملاحظهای دیده نشد. میزان کادمیوم آبشویی شده از خاک گلدانهای بدون کشت گیاه در تیمار 50 میلیگرم بر کیلوگرم کادمیوم با کاربرد 15 و 30 میلیمول NTA نسبت به عدم کاربرد NTA به ترتیب 8 و 4/15 برابر افزایش داشت. درصورتی که در تیمارهای مشابه در حضور گیاه ذرت، میزان آبشویی کادمیوم در خاک به ترتیب 8/5 و 6 برابر نسبت به عدم کاربرد NTA افزایش نشان داد. کادمیوم جذب شده توسط گیاه ذرت در تیمارهای حاوی 50 میلیگرم بر کیلوگرم کادمیوم در کاربرد 30 میلیمول NTA حداکثر بوده و این مقدار 57 درصد بیش از عدم کاربرد NTA اندازهگیری شد. NTA با کاهش در pH خاک و انحلال کربنات کلسیم از خاک بر افزایش کادمیوم آبشویی شده و کادمیوم جذب شده توسط گیاه اثر معنیداری نشان داد. این نتایج بهخوبی اثر توأم NTA و گیاه ذرت در پالایش کادمیوم از خاک آلوده را نشان میدهد. | ||
کلیدواژهها | ||
آبشویی؛ کادمیوم خاک؛ گیاهپالایی؛ نیتریلوتریاستیکاسید (NTA) | ||
مراجع | ||
1- Akhtar S., and Iram S. 2014. Effect of chelating agents on heavy metal extraction from contaminated soils. Research Journal Chemical Sciences 4(9): 70-87.
2- Allen S.E., Grimshaw H.M., and Rowland A.P. 1986. Chemical analysis. p. 285-344. In: Moore, P.D., Chapman, S.B. (ed.) Methods in Plant Ecology. Blackwell Scientific Publication, Oxford, London.
3- Anderson R.L., Bishop W.E., and Campbell R.L. 1985. A review of the environmental and mammalian toxicology of nitrilotriacetic acid. Critical Reviews Toxicology 15(1): 1-102.
4- Babula P., Ryant P., and Adam V. 2009. The role of sulphur in cadmium ions detoxification demonstrated in invitro model: Dionaea muscipula. Environment Chemistry 7(4): 353-361.
5- Bai W. 2018. Effects of Application of NTA and EDTA on Accumulation of Soil Heavy Metals in Chrysanthemum. p. 1-7. IOP Conference Series: Earth and Environmental Science.
6- Brennan R.F., Armour J.D., and Reuter D.J. 1993. Diagnosis of zinc deficiency. p. 167-181. In A.D. Robson (ed.) Zinc in Soils and Plants, P206. Springer, Netherlands.
7- Clemens S., Palmgren M.G., and Kramer U. 2002. A long way ahead: understanding and engineering plant metal accumulation. Journal of Trends in Plant Science 7(7): 309-315.
8- Day P.R. 1982. Particle fractionation and particle-size analysis. p: 935-951. In Methods of soil analysis. Page, A.L., R.H. Miller, D.R. Keeney (ed.). American Society of Agronomy, Madison, Wisconsin.
9- Evangelou M., Ebel W.H.M., and Schaeffer A. 2007. Chelate assisted phytoextraction of heavy metals from soils. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 68(6): 989-1003.
10- Hentrich D., Tauer K., Espanol M., Ginebra M.P., and Taubert A. 2017. EDTA and NTA effectively tune the mineralization of calcium phosphate from bulk aqueous solution. Biomimetics 2(24): 1-21.
11- Holleman A.F., and Wiberg E. 2001. Inorganic Chemistry. San Diego, Academic Press. Berlin, New York.
12- Huang B., Li Z., Huang J., Chen G., Nie X., Ma W., Yao H., Zhen J., and Zeng G. 2015. Aging effect on the leaching behavior of heavy metals (Cu, Zn, and Cd) in red paddy soil. Environmental Science and Pollution Research 22(15): 11467-11477.
13- International Joint Commission. 1977. A report to the Great Lakes Research Advisory Board of the International Joint Commission on the health implications of NTA. Windsor, Canada.
14- Jalali M., and Rostaii L. 2011. Cadmium distribution in plant residues amended calcareous soils as a function of incubation time. Archives of Agronomy and Soil Science 57(2): 137-148.
15- Karimi R., Chorom M., Solhi S., Solhi M., and Safe A. 2012. Potential of Vicia faba and Brassica arvensis for phytoextraction of soil contaminated with cadmium, lead and nickel. African Journal of Agricultural Research 7(22): 3293-3301.
16- Kayser A., Wenger K., Keller A., Attinger W., Felix H.R., Gupta S.K., and Schulin R. 2000. Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil: the use of NTA and sulfur amendments. Environmental Science and Technology 34(9): 1778-1783.
17- Khalkhaliani Z.N., Mesdaghinia A., and Mahvi A. 2006. An experimental study of heavy metal extraction, using various concentration of EDTA in a sandy loam soils. Pakistan Journal of Biological Sciences 9(5): 837-842.
18- Konate A., He X., Zhang Z., Ma Y., Zhang P., Alugongo G.M., and Rui Y. 2017. Magnetic (Fe3O4) nanoparticles reduce heavy metals uptake and mitigate their toxicity in wheat seedling. Sustainability 9(5): 790-806.
19- Lan J., Zhang S., Lin H., Li T., Xu X., Li Y., Jia Y., and Gong G. 2013. Efficiency of biodegradable EDDS, NTA and APAM on enhancing the phytoextraction of cadmium by Siegesbeckia orientalis L. grown in Cd-contaminated soils. Chemosphere 91(9): 1362-1367.
20- Lim T.T., Tay J.H., and Wang J.Y. 2004. Chelating-agent enhanced heavy metal extraction from a contaminated acidic soil. Journal of Environmental Engineering 130(1): 59-66.
21- Liu L., Li W., Song W., and Guo M. 2018. Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Science of the Total Environment 633:206-219.
22- Loppert R.H., and Suarez D.L. 1996. Carbonate and gypsum. p. 437- 474. In D.L. Sparks et al. (ed.) Methods of Soil Analysis. Part 3. ASA and SSSA, Madison, WI.
23- Mahvi A., Mesdaghinia A., and Naghipoor D. 2005. Comparison of heavy metals extraction in contaminated soils by various concentrations of EDTA. Journal of Biological Sciences 8(8): 1081-1085.
24- Majer B.J., Tscherko D., and Paschke A. 2002. Effects of heavy metal contamination of soils on micronucleus induction in Tradescantia and on microbial enzyme activities: a comparative investigation. Mutation Research 515(1-2): 111-124.
25- Martell A.E., and Smith R.M. 1974. Critical Stability Constants. Vol. 1, Amino Acids, New York, Plenum.
26- Mauskar J.M. 2007. Cadmium-an environment toxicant. Central Pollution Control Board. Ministry of Environment and Forests, Govt of India, Parivesh Bhawan, East Arjun Nagar, Delhi-110032.
27- Naghipour D., Jaafari J., Ashrafi S.D., and Mahvi A.H. 2017. Remediation of heavy metals contaminated silty clay loam soil by column extraction with Ethylenediaminetetraacetic Acid and Nitrilo Triacetic Acid. Journal of Environmental Engineering 143(8): 04017026.
28- Olsen S.R., Cole C.V., Watanabe F.S., and Dean L.A. 1954. Estimation of available phosphorus in soil by extraction with sodium bicarbonate. USDA. Circ. 939. U. S. Gov. Print. Office, Washington, DC.
29- Ozkan A., Gunkaya Z., and Banar M. 2016. Pyrolysis of plants after phytoremediation of contaminated soil with lead, cadmium and zinc. Bulletin of Environmental Contamination and Toxicology 96(3):415-419.
30- Quartacci M.F., Baker A.J.M., and Navari-Izzo F. 2005. Nitriloacetate and citric acid assisted phytoextraction of cadmium by Indian mustard (Brassica juncea (L.) Czernj, Brassicaceae). Chemosphere 59(9): 1249-1255.
31- Sarwar N., Imran M., Shaheen M.R., Ishaq W., Kamran A., Matloob A., Rehim A., and Hussain S. 2017. Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171: 710-721.
32- Shen Z.G., Li X.D., Wang C.C., Chen H.M., and Chua H. 2002. Lead phytoextraction from contaminated soils with high-biomass plant species. Journal of Environmental Quality 31(6): 1893-1900.
33- Soleimani M., Hajabbasi M.A., Afyuni M., Akbar S., Jensen J.K., Holm P.E., and Borggaard O.K. 2010. Comparison of natural humic substances and synthetic ethylenediaminetetraacetic acid and nitrilotriacetic acid as washing agents of a heavy metal polluted soil. Journal of Environmental Quality 39(3): 855-862.
34- Sumner M.E., and Miller W.P. 1996. Cation exchange capacity, and exchange coefficients. p. 1201-1231. In D.L. Sparks (ed.), Methods of soil analysis. p1320. Part 2: Chemical properties, (3rd ed.) ASA, SSSA, CSSA, Madison, WI.
35- Thangavel P., and Subhuram C.V. 2004. Phytoextraction: role of hyper accumulators in metal contaminated soils. Proceedings of the Indian National Science Academy. Part B 70(1): 109-130.
36- Turan M., and Esringu A. 2007. Phytoremediation based on canola (Brassica napus L.) and Indian mustard (Brassica juncea L.) planted on spiked soil by aliquot amount of Cd, Cu, Pb, and Zn. Plant, Soil and Environment, 53(1): 7–15.
37- Walkley A., and Black I.A. 1934. Review examination of the degtjareff method determining soil organic matter and a proposed modification of the chromic acid titration method. Journal of Soil Science 34: 29-38.
38- Wang G., Zhang S., Xu X., Li T., Li Y., Deng O., and Gong G. 2014. Efficiency of nanoscale zero-valent iron on the enhanced low molecular weight organic acid removal Pb from contaminated soil. Chemosphere 117: 617-624.
39- Wei S., Teixeira Da Silva J.A., and Zhou Q. 2008. Agro-improving method of phytoextracting heavy metal contaminated soil. Journal of Hazard Materials 150(3): 662-668.
40- Wenzel W.W., Unterbrunner R., Sommer P., and Pasqualina S. 2003. Chelate-assisted phytoextraction using canola (Brassica napus L.) in outdoors pot and lysimeter experiments. Plant and Soil,249(1): 83-96.
41- Wilcox L.V. 1951. A method for calculating the saturation percentage from the weight of a known volume of saturated soil paste. Journal of Soil Science 73 (3): 233-238.
42- Wu J., Hsu F., and Cunningham S. 1999. Chelate–assisted Pb phytoextraction: Pb availability, uptake and translocation constrains. Environmental Science and Technology, 33(11): 1898-1904.
43- Yanai J., Zhao F.J., and McGrath S.P. 2006. Effect of soil characteristics on Cd uptake by the hyperaccumulator Thlaspi caerulescens. Environmental Pollution 139(1): 167-175.
44- Zhang L., Zhang L., and Song F. 2008. Cadmium uptake and distribution by different maize genotypes in maturing stag. Communications in Soil Science and Plant Analysis 39(9-10): 1517-1531.
45- Zhao S., Jia L., and Duo L. 2016. Combining nitrilotriacetic acid and permeable barriers for enhanced phytoextraction of heavy metals from municipal solid waste compost by lolium perenne and reduced metal leaching. Journal of Environmental Quality 45(3): 933-939.
46- Zou Z., Qiu R., Zhang W., Dong H., Zhao Z., Zhang T., Wei X., and Cai X. 2009. The study of operating variables in soil washing with EDTA. Environmental Pollution 157(1): 229-236. | ||
آمار تعداد مشاهده مقاله: 353 تعداد دریافت فایل اصل مقاله: 207 |