1- Afif E., Matar A., and Torrent J. 1993. Availability of phosphate applied to calcareous soils of West Asia and North Africa. Soil Science Society of America Journal 57: 756–760.
2- Allison L.E., and Moodie C.D. 1965. Carbonates. In: Black, C. A. (ED). Methods of Soil Analysis. Pares, ASA: Madison, WI. 1379-1396.
3- Cole C.V., Olsen, S.R., and Scott C.O. 1953. The nature of phosphate sorption by calcium carbonate. Soil Science Society of America Proceedings 17: 352-356.
4- Debicka M., Kocowicz A., Weber J., and Jamroz E. 2015. Organic matter effects on phosphorus sorption in sandy soils. Agronomy and Soil Science 1-16.
5- Du Z.Y., Wang Q.H., Liu F.C., Ma H.L., Ma B.Y., and Malhi S.S. 2013. Movement of phosphorus in a calcareous soil as affected by Humic Acid. Pedosphere 23: 229–235.
6- Farbodi M. 2007. Evaluation of the sorption capacity of phosphorus in Three series of calcareous soils Karaj region by using adsorption isotherm to recommend fertilizer. Journal of Modern Agricultural Science 3(9): 59-68. (In Persian)
7- Filip p., Markus E., Cherubini P., Giacomo S., Wilfried H., and Evelyne D. 2008. Comparison of different methods of obtaining a resilient organic matter fraction in Alpine soils. Geoderma 145: 355-369.
8- Fink J.R., Inda A.V., Bayer C., Torrent J., and Barron V. 2014. Mineralogy and phosphorus adsorption in soils of south and central-west Brazil under conventional and no-tillage systems. Acta Scientiarum Agronomy 36(3): 379-387.
9- Gee G.W., and Bauder J.W.1986. Particle size analysis. Pp.201-214. In: HD Jacob and G Clarke Topp. (Eds) . Methods of Soil Analysis. Part 4. Physical Methods. SSSA. Madison, WI.
10- Griffin R.A., and Jurinak J.J. 1973. The Interaction of Phosphate with Calcite. Soil Science Society of America Journal 37: 847-850.
11- Goldberg S., and Forster H.S. 1991. Boron sorption on calcareous soils and reference calcites. Soil Science 152: 304–310.
12- Guppy C., Menzies N., Moody P., and Blamey F. 2005. Competitive sorption reactions between phosphorus and organic matter in soil: A review. Australian Journal of Agricultural Research 43: 189-202.
13- Hamilton S.K., Bruesewitz D.A., Horst G.P., Weed D.B., and Sarnelle O. 2009. Biogenic calcite-phosphorus precipitation as a negative feedback to lake eutrophication. Canadian Journal of Fisheries and Aquatic Sciences 66: 343-350.
14- Havlin J.L., Beaton J.D., Tisdale S.L., and Nelson W.L. 1999. Soil Fertility and Fertilizers: an Introduction to Nutrient Management. 6th edition. Prentice Hall, Inc. Saddle River, New Jersey.
15- Havlin J.L., Tisdale S.L.,BeatonJ.D., and Nelson W.L. 2005. Soil fertility and fertilizers: An introduction to nutrient management. 7.ed. Pearson Education, Upper Saddle River, NJ.
16- Hiradate S., and Uchida N. 2004. Effects of soil organic matter on pH-dependent phosphate sorption by soils. Soil Science. Plant Nutrition 50: 665–675.
17- Ingrid K., Sander B., Lars S., and Bent T. 2009. Assessing soil carbon lability by near infrared spectroscopy and NaOCl oxidation. Soil Biology and Biochemistry. 41: 2170-2177.
18- Jafari A., Shariatmadari H., and Hejazi Mehrizi M. 2015. Determination of phosphorus buffering capacity and standard phosphorus requirement in four toposequence from arid and semi-arid regions using sorption isotherms (A case study: Isfahan and Shahre-Kord). Journal of Water and Soil Conservation 22(3): 89-103. (In Persian with English abstract)
19- Jalali M. 2007. Phosphorus status and sorption characteristics of some calcareous soils of Hamadan, western Iran. Environmental Geology 53: 365-374.
20- Leoppert R.H., and Suarez D.L. 1996. Methods of Soil Analysis . part3.Chemical Methods. Soil Science Society of America and American Society of Agronomy Madison.WI.
21- Mahdizadeh M., Reyhanitabar A., and Oustan SH. 2015. Effect of Soil Organic Matter Removal on Phosphorus Sorption in Some Calcareous Soils of East Azerbaijan Province. Journal of Practical Soil Researches 2(1): 1-17.(In Persian with English abstract)
22- Maluf H.J.G.M., Silva C.A., Curi N., Norton L.D., and Rosa S.D. 2018. Adsorption and availability of phosphorus in response to humic acid rates in soils limed with CaCO3 or MgCO3 .Ciência e Agrotecnologia 42(1): 7-20.
23- Marzadori C., Vittori L., Ciavatta C., and Sequi P. 1991. Soil organic matter influence on adsorption and desorption of boron. Soil Science Society of America Journal 55: 1582-1585.
24- McLaren T., Guppy C., Tighe M., Moody P., and Bell M. 2014. Dilute acid extraction is a useful indicator of the supply of slowly available phosphorus in Vertisols. Soil Science Society American Journal 78. 139–146.
25- Mikutta R., Kleber M., Kaiser K., and John R. 2005. Review: Organic matter removal from soils using hydrogen peroxide, sodium hypochlorite, and disodium peroxodisulfat. Soil Science Society of America Journal 69: 120-135.
26- Olsen SR., and Khasawneh FE. 1980. Use and limitations of physical- chemical criteria for assessing the status of phosphorus in soils. 361-410.
27- Olsen SR., and Sommer L.E. 1982. Phophorus. In: Klute, A. (Ed). Methods of soil Analysis: Chemical and microbiological Properties, part2. 2nd Ed. Agron. Monogr. No. 9. ASA and SSSA, Madison WI 403-430.
28- PerassiI., and Borgnino L. 2014. Adsorption and surface precipitation of phosphate onto CaCO3- montmorillonite: effect of pH, ionic strength and competition with humic acid. Geoderma 232: 600-608.
29- Rashmi I., Parama V.R.R., and Biswas A.K. 2016. Phosphate sorption parameters in relation to soil properties in some major agricultural soils of india. SAARC Journal of Agriculture 14(1): 01-09.
30- Reyhanitabar A. 2010. Effect of Carbonates Removal on Zinc Sorption in the Selected Calcareous Soils of Iran. Journal of Water and Soil Science 22(1): 125-144. (In Persian with English abstract)
31- Rhoads J.W. 1986. Cation exchange capacity. Pp. 149- 158.In A. C. Page(Ed). Methods of soil analysis. Part2. American Society of Agronomy.
32- Ryan J., Hasan H.M., Baasiri M., and Tabbara H.S. 1985. Availability and Transformation of Applied Phosphorus In Calcareous Lebanese Soils. Soil Science Society of America Journal 49: 1215-1220.
33- Sarkar D., De K.D., Das R., and Mandal B. 2013. Removal of organic matter and oxides of iron and manganese from soil influences boron adsorption in soil. Geoderma.
34- Siregar A., Kleber M., Mikutta R., and John R. 2004. Sodium hypochlorite oxidation reduces soil organic matter concentrations without affecting inorganic soil constituents. European Journal of Soil Science 56: 481-490.
35- Shirvani M., and Shariatmadari H. 2002. Application of Sorption Isotherms for Determining the Phosphorus Buffering Indices and the Standard P Requirement of Some Calcareous Soils in Isfahan. J. Sci. Technol. Agric. Natur. Resour. (Water and Soil Science) 6: 121-129. (In Persian)
36- Soliemanzadeh A., and Fekri M. 2017. Synthesis of clay-supported nanoscale zero-valent iron using green tea extract for the removal of phosphorus from aqueous solutions: Chinese Journal of Chemical Engineering 25(7): 924-930.
37- Tofighi H., and Shirmardi M. 2015. The effect of calcium carbonate and pH On kinetics of phosphorus fixation in different soils. Iran Water and Soil Research 46(4): 739-748. (In Presian)
38- Uygur V. 2009. Phosphate Sorption in Calcareous Soils: The Role of Iron Oxide and Carbonates. Asian Journal of Chemistry 21(4): 3001-3009.
39- Varinderpal S., Dhillon N.S., and Brar B.S. 2006. Influence of long-term use of fertilizers and farmyard manure on the adsorption–desorption behaviour and bio-availability of phosphorus in soils. Nutrient Cycling in Agroecosystems 75: 67-78.
40- Walkey A., and Black I.A. 1934. An Examination of the Degtjareff Method for Determining Soil Organic Matter and a Proposed Modification of the Chromic Acid Titration Method. Soil Science 37: 29-38.
41- Wang L., Liang T., Kleinman P.J.A., and Cao H. 2011. An experimental study on using rare earth elements to trace phosphorous losses from nonpoint sources. Chemosphere 85: 1075–1079.
42- Wang L., and Liang T. 2014. Effects of exogenous rare earth elements on phosphorus adsorption and desorption in different types of soils. Chemosphere 103: 148–155.
43- Wolde Z., and Haile W. 2015.Phosphorus sorption isotherms and external phosphorus requirements of some soils of southern Ethiopia. African Crop Science Journal 23(2): 89-99.
44- Yan X., Wang D., Zhang H., Zhang G., and Wei Z. 2013. Organic amendments affect phosphorus sorption characteristics in a paddy soil. Agriculture, Ecosystems & Environment 175: 47–53.
45- Yang X., Chen X., and Yang X. 2019. Effect of organic matter on phosphorus adsorption and desorption in a black soil from Northeast China. Soil & Tillage Research 187: 85-91.
46- Yu W., Ding X., Xue S., Li S., Liao X., and Wang R. 2013. Effects of organic-matter application on phosphorus adsorption of three soil parent materials. Journal of Soil Science and Plant Nutrition 13(4):1003-1017.
47- Zimmermann M., Leifeld J., Abiven S., Schmidt M.W.I., and Fuhrer J. 2007. Sodium hypochlorite separates an older soil organic matter fraction than acid hydrolysis. Geoderma 139: 171-179.
48- Zhang S., Huffman T., Zhang X., Liu W., and Liu Z. 2014. Spatial distribution of soil nutrient at depth in black soil of Northeast China: a case study of soil available phosphorus and total phosphorus. International Journal of Soil, Sediment and Water14: 1775–1789.