تعداد نشریات | 49 |
تعداد شمارهها | 1,799 |
تعداد مقالات | 19,112 |
تعداد مشاهده مقاله | 8,412,633 |
تعداد دریافت فایل اصل مقاله | 5,738,454 |
معرفی مقاومترین ژنوتیپهای سرو کوهی(Juniperus spp.) به تنش خشکی بر پایه شاخصهای فیزیولوژیکی و آنتی اکسیدانی | ||
علوم باغبانی | ||
مقاله 2، دوره 36، شماره 2 - شماره پیاپی 54، شهریور 1401، صفحه 343-353 اصل مقاله (743.01 K) | ||
نوع مقاله: مقالات پژوهشی | ||
شناسه دیجیتال (DOI): 10.22067/jhorts4.v39i1.88559 | ||
نویسندگان | ||
ساقی کیقبادی* 1؛ رضا فتوحی قزوینی2؛ یحیی تاجور3؛ عاطفه صبوری4 | ||
1گروه باغبانی، فضای سبز، گل و گیاهان زینتی، پردیس دانشگاه گیلان، رشت، ایران | ||
2گروه باغبانی، دانشگاه گیلان، رشت، ایران | ||
3پژوهشکده مرکبات و میوه های گرمسیری، رامسر، ایران | ||
4گروه اصلاح نباتات، دانشگاه گیلان، رشت، ایران | ||
چکیده | ||
خشکی یکی از مهمترین تنشهای محیطی است که انواع گیاهان از جمله گیاهان زینتی را تحت تاثیر قرار می دهد. شناسایی و انتخاب ژنوتیپهای مقاوم گیاهان زینتی برای اجرای پروژههای فضای سبز ضروری به نظر می رسد. بدین منظور پژوهشی بهصورت آزمایش فاکتوریل در قالب طرح کاملاً تصادفی با یازده ژنوتیپ رونده اُرس، در دو سطح آبیاری (تیمار شاهد یا آبیاری و خشکی شدید) در آزمایشگاه پژوهشکده مرکبات و میوههای گرمسیری رامسر انجام شد. تنش خشکی موجب کاهش رنگیزههای فتوسنتزی در ژنوتیپهای مورد بررسی گردید. محتوای قندهای محلول، پرولین و پروتئین محلول کل در شرایط تنش خشکی افزایش یافتند و بیشترین افزایش نسبت به گیاهان شاهد در ژنوتیپ G3 بهترتیب 8/30 میلیگرم بر گرم وزن خشک، 5/30 میکروگرم بر گرم وزن خشک و 2/965 میکروگرم بر گرم وزن تر بدست آمد. همچنین بیشترین افزایش در میزان صفات پراکسید هیدروژن در ژنوتیپ G11، مالون دی آلدئید در ژنوتیپ G4 و نشت یونی در ژنوتیپ G10 نسبت به گیاهان شاهد مشاهده شد. بیشترین فعالیت آنزیم سوپراکسید دیسموتاز در ژنوتیپ G3 (57/85 درصد)، محتوای فنل کل در ژنوتیپ G5 (09/181 درصد) و فلاونوئید کل در ژنوتیپ G8 (46/98 درصد) مشاهده شد. ژنوتیپ G3 (رونده معمولی) بر مبنای بالا بودن مقادیر آنزیم سوپراکسید دیسموتاز، قندهای محلول، پرولین و پروتئین محلول نسبت به خشکی مقاومترین ژنوتیپ شناخته شد. ژنوتیپ G5نیز به دلیل افزایش فعالیت آنزیم سوپراکسید دیسموتاز و افزایش تولید فلاونوئید کل در گروه ژنوتیپهای مقاوم قرار گرفت. بنابراین در ژنوتیپهای اُرس افزایش متابولیتهای سازگار و سیستم آنتی اکسیدانی، مکانسیم حفاظتی کارآمدی در برابر آسیب اکسیداتیو ناشی از تنش خشکی است. | ||
کلیدواژهها | ||
اُرس؛ تنش محیطی؛ سوپر اکسید دیسموتاز؛ متابولیتهای سازگار | ||
مراجع | ||
1- Tajvar Y., Fotouhi-Gazvini R., Hamidoghli Y., and Hassan-Sajedi R. 2011. Physiological and biochemical responses of peg mandarin on citrange rootstock to low temperature stress. Journal of Plant Biology 9: 1-12. (In Persian with English abstract) 2- Fifaei R., Fotouhi-Gazvini R., Golein B., and Hamidoghli Y. 2015. The Effect of Drought Stress on the amount of proline, soluble sugars, malondialdehyde and pigments in commercial citrus bases in north of country. Journal Crop Improve 17(4): 939-952. (In Persian with English abstract) 3- Zarabi M.M., Talaei A., Soleimani A., and Haddad R. 2010. Physiological role and biochemical changes of six olive (Olea europaea L.) cultivars against drought stress. Journal of Horticultural Science 24(2): 234-244. (In Persian with English abstract) 4- Ahmad P., Jaleel C.A., and Sharma S. 2011. Antioxidative defence system, lipid peroxidation, proline metabolizing enzymes and biochemical activity in two genotypes of Morus alba L. subjected to NaCl stress. Russian Journal Plant Physlogy 57: 509-517. https://doi:10.1134/S1021443710040084. 5- Alguacil M.F., Caravaca P., Daz-Vivancos J.A., Hernandez L., and Roldan A. 2006. Effect of arbuscular mycorrhizae and induced drought stress on antioxidant enzyme and nitrate reductase activities in Juniperus oxycedrus L. grown in a composted sewage sludge-amended semi-arid soil. Plant and Soil 279: 209-218. 6- Ashraf M.A., Riaz M., and Saleem Arif M. 2018. Plant metabolites and regulation under environmental stress Edited by Parvaiz Ahmad, Mohammad Abass Ahanger., Vijay Pratap Singh, Durgesh Kumar Tripathi, Pravej Alam, Mohammad Nasser Alyemeni. Academic Press is an in print of Elsevier. 7- Bates L., Waldren S.P., and Tear D.I .1973. Rapid determination of free proline for water- stress studies. Plant and Soil 39: 205-207. http://dx.doi.org/10.1007/BF00018060. 8- Seleiman M., Al-Suhaibani N., Ali N., Akmal M., Alotaibi M., Rafay Y., Dindaroglu T., Hafiz A., and Battaglia M. 2021. Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants 10: 259. https://doi.org/10.3390/plants/10020259. 9- Boominathan R., and Doran P.M. 2002. Ni induced oxidative stress in roots of the Ni hyperaccumolator, Alyssum bertoloni. New Phytologist 156: 202-205. https://doi.org/10.1046/j.1469-8137.2002.00506.x. 10- Bradford M.M. 1976. A rapid and sensitive method for the quantisation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3. 11- Chang C., Yang M., Wen H., and Chern J. 2002. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal Food Drug Analysis 10: 178-182. 12- Dolatabadian A., Modares Sanavi S.A.M., and Sharifi M. 2009. Effect of ascorbic acid on antioxidant enzyme, proline accumulation and lipid peroxidation of Brassica napus L. under salt stress. Journal Agronomy Crop Science 194: 206-213. https://doi.org/10.1111/j.1439-037X.2008.00301.x. 13- Farooq M., Wahid A., Kobayashi N., Fujita D., and Barsa S.M. 2009. Plant drought stress: effects, mechanisms and management. Agronomy Sustainable Development 29: 185-212. https://doi.org/10.1051/agro:2008021. 14- Harinasut P., Poonsopa D., Roengmongkol K., and Charoensalaporn R. 2003. Salinity effects on antioxidant enzymes in mulburg cultivar. Asian Journal Scientific Research 29: 109-113. 15- Hosseini-Boldaji S.A., Khavari-Nejad R.A., Hassan-Sajedi R., Fahimi H., and Saadatmand S. 2012. Water availability effects on antioxidant enzyme activities lipid peroxidation, and reducing sugar contents of alfalfa (Medicago sativa L.). Acta Physiologiea Plantarum 34: 1177-1186. http://doi.org/10.1007/s11738-011-0914-6. 16- Jimenez S., Dridi, J., Gutierrez D., Moret D., Jrigoyen J.J. Moreno M.A., and Gogorcena. Y. 2013. Physiological, biochemical and molecular responses in four prunus roots tocks submitted to drought stress. Tree Physiology 33: 1061-75. http://doi.org/10.1093/treephys/tpt074. Epub 2013 Oct 25. 17- Kholova J., Hasan C.T.M., Khocova M., and Vadie V. 2011. Doesa terminal drought tolerance QTL contribute to differences in ROS scavenging enzymes and photosynthetic pigments in pear millet exposed to drought. Journal of Environmental Experimental Botany 71: 99-106. 18- Kochert G., Helebust J.A., and Craig J.S. 1978. Physiological methods: Carbohydrate determination by the phenol sulfuric acid method, Physiological methods, Kochert, G., Eds., and Cambridge University: Press Cambridge, United Kingdom, PP: 13-16. 19-Laxa M., Liebthal M., Telman W., Chibani K., and Dietz K.J. 2019. The Role of the Plant Antioxidant System in Drought Tolerance. Antioxidants 94: 1-31. http://doi.org/10.1016/j.envexpbot.2010.11.001. 20- Lichtenthaler H.K. 1987. Chlorophylls and carotenoids; pigments of photosynthetic membranes. Method in Enzymology 148: 350-382. https://doi.org/10.1016/0076-6879(87)48036-1. 21- Meda A., Lamien C.E., Romito M., Millogo J., and Nacoulma O.G. 2005. Determination of the total phenolic, flavonoid and pralin contents in Burkina fasan honey, as well as their scavenging activity. Food Chemistry 91: 571-577. https://doi.org/10.1016/j.foodchem.2004.10.006. 22- Nyarukowa C., Koech R., Loots T., and Apostolides Z. 2016. A method for Short-time Withering Assessment of Probability for Drought Tolerance in Camellia sinensis validated by targeted metabolomics. Journal Plant Physiology 198: 39-48. http://doi.org/10.1016/j.jplph.2016.04.004. 23- Sairam R.K., Veerabhadra-Rao K., and Srivastava G.C. 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science 163: 1037-1046. https://doi.org/10.1016/S0168-9452(02)00278-9. 24- Saleem M., Ashraf M., and Akram N.A. 2011. Salt (NaCl)-induced modulation in some key physio-biochemical attributes in okra (Abelmoschus esculentus L.). Journal Agronomy Crop Science 197: 202-213. https://doi.org/10.1111/j.1439-037X.2010.00453.x. 25- Siripornadulsil S., Traina S., Verma D.P.S., and Sayre R.T. 2002. Molecular mechanisms of proline mediated to toxic heavy metals in transgenic microalgae. Plant Cell 14: 2837-2847. http://doi.org/10.1105/tpc.004853. 26- Tavares L., McDougall G.J., Fortalezas S., Stewart D., Ferreira R.B., and Santos C.N. 2012. The neuroprotective potential of phenolic-enriched fractions from four Juniperus species found in Portugal. Food Chemistry 135: 562-570. 27- Wang X., Cai X., Wang Q., and Dai S.2016. Drought-responsive mechanisms in plant leaves revealed by proteomics. International Journal Molecular Science 17: 1-30. http://doi.org/10.3390/ijms17101706. 28- Winterbourn C.C., Mcgrath B.M., and Carrell R.W. 1977. Reactions involving superoxide and normal and unstable hemoglobins. Biochemical Journal 155: 493-502. http://doi.org/10.1042/bj1550493. 29- Wu Q.S., Xia R.X., and Zou Y.N. 2008. Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. European Journal Soil Biology 44: 122-128. http://doi.org/10.1016/j.ejsobi.2007.10.001. | ||
آمار تعداد مشاهده مقاله: 182 تعداد دریافت فایل اصل مقاله: 336 |