1- Atlagić J., Terzić S., and Marjanović-Jeromela A. 2012. Staining and fluorescent microscopy methods for pollen viability determination in sunflower and other plant species. Industrial crops and products 35(1): 88-91.
2- Ayanoglu H., Bayazit S., Inan G., Bakir M., Akpinar AE Kazan K., and Ergul A. 2007. AFLP analysis of genetic diversity in Turkish green plum accessions (Prunus cerasifera L.) adapted to the Mediterranean region. Scientia Horticulterae 114: 263-267.
3- Chen X., Huairui Shu., and Xuesen Chen. 2004. Studies on self--incompatibility in stone fruit trees. Chinese Bulletin of Botany 21: 755-764.
4- Cropotova J., Tylewicz U., Cocci E., Romani S., and Dalla Rosa M. 2016. A novel fluorescence microscopy approach to estimate quality loss of stored fruit fillings as a result of browning. Food Chemistry 194: 175-183.
5- Dafni Amots., Michael Hesse., and Ettore Pacini. 2012. Pollen and pollination: Springer Science & Business Media.
6- Eftekhari M., and Sharafi Y. 2020. Microscopic study of fertilization and fruit set in apricot cultivars sprayed by zinc. Journal of Horticultural Plant Nutrition 2: 1-14.
7- Eftekhari M., and Sharafi Y. 2020. Microscopic study of the effect of Boron foliar application on pollen tube penetration and fruit set in apricot cultivars. Journal of Horticultural Plant Nutrition 3: 119-130.
8- Fahrni C.J. 2007. Biological applications of X-ray fluorescence microscopy: exploring the subcellular topography and speciation of transition metals. Current Opinion in Chemical Biology 11(2): 121-127.
9- FAO. 2018. FAO statistical database. http://apps.fao.org.(visited 10 january 2018)
10- Gu Chao., J Wu., Y-H Du., Y-N Yang., and S-L Zhang. 2013. Two different Prunus S fb alleles have the same function in the Self-incompatibility reaction. Plant Molecular Biology Reporter 31(20): 425-34.
11- Gu Chao, Jun Wu., Shu-Jun Zhang., Ya-Nan Yang., Hua-Qing Wu., M Awais Khan., Shao-Ling Zhang, and Qing-Zhong Liu. 2011. Molecular analysis of eight S fb alleles and a new S fb-like gene in Prunus Pseudocerasus and Prunus speciosa. Tree genetics & Genomes 7(5): 891-902.
12- Halasz J., Hegdus A. and pedryec A. 2006. Review of the molecular background of self-incompatibility in Rosaceae fruit trees. Journal of Horticultural Sciences 12: 7-19.
13- Hauk N., Yamane H., Tao R. and Iezzoni A.F. 2002. Self-compatibility and incompatibility in tetraploid sour cherry (Prunus cerasus L.). Sex Plant Reproduction 16: 14-19.
14- Hegedűs A., Lenart J., and Halasz J. 2012. Sexual incompatibility in Rosaceae fruit tree species: Molecular interactions and evolutionary dynamics. Biologia Plantarum 56(2): 201-09.
15- Hegedus A., Szabo Z., Nyeki J., Halasz J. and Pedryec A. 2006. Molecular analysis of S-haplotypes in peach, a self-compatible Prunus species. Journal of American Society. Horticultural Sciences 131: 738-743.
16- Kubitscheck U. 2017. Fluorescence microscopy: from principles to biological applications: John Wiley & Sons.
17- Lansari A., and Iezzoni A. 1990. A preliminary analysis of self incompatibility in Sour cherry, Hortscience 25(12): 1636-1638.
18- Lech W. and Tylus K. 1983. Pollination, fertilization, and fruit set of some sour cherry varieties. Acta Horticulturae 139: 33–39.
19- Lisek A., Danuta Kucharska, Agnieszka Głowacka., and Elżbieta Rozpara. 2017. Identification of S-haplotypes of European cultivars of sour cherry, The Journal of Horticultural Science and Biotechnology 34(12): 163-168.
20- Losada J.M. and Herrero M. 2014. Glycoprotein composition along the pistil of (Malusdomestica) and the modulation of pollen tube growth. BMC Plant Biology 14(1): 1-7.
21- Mable B.K. 2004. Polyploidy and self-compatibility: Is there an association? New Phytologist 162: 803–811.
22- Makovics-Zsohar N., and Halasz J. 2016. Self-incompatibility system in polyploid fruit tree species- A review, The International Journal of Plant Reproductive Biology 8(1): 24-33.
23- Mularczyk-Oliwa M., Bombalska A., Kaliszewski M., Włodarski M., Kopczyński K., Kwaśny M., Szpakowska M., and Trafny E.A. 2012. Comparison of fluorescence spectroscopy and FTIR in differentiation of plant pollens. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 97: 246-254.
24- Nathanael R., Hauck, Hisayo Yamane, Ryutaro Tao., and Amy F. Iezzoni. 2006. Accumulation of nonfunctional S-haplotypes results in the breakdown of gametophytic Self-incompatibility in tetraploid Prunus. Genetics Society of America 172: 1191–1198.
25- Ortega E., Martinez-Garca P., Dicenta F., Boskovic R. and Tobutt K.R. 2002. Study of self-compatibility in almond progenies from self-fertilization by florescence microscopy and stylar ribonuclease assay. Acta Horticulturae 591: 229-232.
26- Radunić M., Jazbec A., Ercisli S., Čmelik Z., and Ban S.G. 2017. Pollen-pistil interaction influence on the fruit set of sweet cherry. Scientia Horticulturae 224: 358-366.
27- Sabbaghpoor Heris J., Sharafi Y., and Buzari B. 2020 Investigation of the Compatibility among some Sour Cherry Cultivars and Genotypes in Iran. Iranian Journal of Horticultural Science and Technology 21(1): 47–58.
28- Salesses G., and Bonnet A. 1994. Citological studies of tetra-, hepta-, and octoploid interspecific hybrids between P. cerasifera, P. spinosa and P. domestica. Acta Horticulturae 359: 26–32.
29- Schneckenburger H. 2005. Total internal reflection fluorescence microscopy: technical innovations and novel applications. Current Opinion in Biotechnology 16(1): 13-18.
30- Sedgley M. 1990. Flowering of deciduous perennial fruit crops. Horticultural Reviews 12: 223-264.
31- Sharafi Y. 2019. Effects of zinc on pollen gamete penetration to pistils in some apple crosses assessed by fluorescence microscopy. Caryologia 72: 63-73.
32- Sharafi Y., and Raina M. 2020. Effect of boron on pollen attributes in different cultivars of Malus domestica L. National Academy Science Letters 43(4): 399-403.
33- Sharafi Y., Talebi S.F., and Talei D. 2017. Effects of heavy metals on male gametes of sweet cherry. Caryologia 70: 166-173.
34- Sharafi Y., Talebi S.F., and Talei D. 2017. Effects of heavy metals on male gametes of sweet cherry, Caryologia 70: 166-173.
35- Sutherland Bruce G., Kenneth R., Tobutt, and Timothy P Robbins. 2008. Trans-specific S-Rnase and S fb alleles in Prunus Self-incompatibility haplotypes. Molecular Genetics and Genomics 279(95): 65-78.
36- Tao Ryutaro, Akiko Watari., Toshio Hanada., Tsuyoshi Habu., Hideaki Y., Masami Y., and Hisayo Y. 2007. Self-compatible peach (Prunus Persica) has mutant versions of the S haplotypes found in Self-incompatible Prunus Species. Plant Molecular Biology 63(1): 109-23.
37- Tatsuya Tsukamoto., Nathanael R., Hauck, Ryutaro Tao, Ning Jiang and Amy Iezzoni F. 2010. Molecular and genetic analyses of four nonfunctional S haplotype variants derived from a common ancestral S haplotype identified in sour cherry (Prunus cerasus L.). Genetics Society of America 184: 411–427.
38- Tobutt K.R., Boskovic R., Cerovic´·R., Sonneveld T., and Rusic D. 2004. Identification of incompatibility alleles in the tetraploid species sour cherry. Theor Appl Genet 108: 775–785.
39- Tsukamoto T., Hauck N.R., Tao R., Jiang N., and Iezzoni A. F. 2006. Molecular characterization of three nonfunctional haplotypes in sour cherry (Prunus cerasus). Plant Molecular Biology 62: 371–383.
40- Tsukamoto T., Hauck N.R., Tao R., Jiang N., and Iezzoni A.F. 2008. Genetic and molecular characterization of three nonfunctional haplotypes in sour cherry (Prunus cerasus). Journal of Experimental Botany 59(11): 3169-3185.
41- Tsukamoto T., Hauck N.R., Tao R., Jiang N., and Iezzoni A.F. 2008. Molecular and genetic analyses of four nonfunctional S haplotype variants derived from a common ancestral S haplotype identified in sour cherry (Prunus cerasus L.). Genetics Society of America 411-427.
42- Yamane H., Kazuo Ikeda., Nathanael R., Hauck, Amy F. Iezzoni and Ryutaro Tao. 2003. Self-incompatibility (S) locus region of the mutated S6-haplotype of sour cherry (Prunus cerasus) contains a functional pollen S allele and a non-functional pistil S allele. Journal of Experimental Botany 54(392): 2431-2437.
43- Yeloff D., and Hunt C. 2005. Fluorescence microscopy of pollen and spores: a tool for investigating environmental change. Review of Palaeobotany and Palynology 133(3): 203-219.