1- Adavi Z., and Mashhadi-Hossainali M. 2014. 4D tomographic reconstruction of the tropospheric wet refractivity using the concept of virtual reference station, case study: northwest of Iran. Meteorology and Atmospheric Physics, 126(3-4), 193-205.
2- Alexandrov M.D., Schmid B., Turner D.D., Cairns B., Oinas V., Lacis A.A., and Eilers J. 2009. Columnar water vapor retrievals from multifilter rotating shadowband radiometer data. Journal of Geophysical Research: Atmospheres, 114(D2).
3- Bevis M., Businger S., Herring T.A., Rocken C., Anthes R.A., and Ware R.H. 1992. GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System. Journal of Geophysical Research: Atmospheres, 97(D14), 15787-15801.
4- Bevis M., Businger S., Chiswell S., Herring T.A., Anthes R.A., Rocken C., and Ware R. H. 1994. GPS meteorology: Mapping zenith wet delays onto precipitable water. Journal of applied meteorology, 33(3), 379-386.
5- Boccolari M., Fazlagic S., Frontero P., Lombroso L., Pugnaghi S., Santangelo R., and Teggi S. 2002. GPS Zenith Total Delays and Precipitable Water in comparison with special meteorological observations in Verona (Italy) during MAP-SOP. Annals of Geophysics.
6- Bokoye A.I., Royer A., O'Neill N.T., Cliche P., McArthur L.J.B., Teillet P.M., and Theriault J.M. 2003. Multisensor analysis of integrated atmospheric water vapor over Canada and Alaska. Journal of Geophysical Research: Atmospheres, 108(D15).
7- Davis J.L., Herring T.A., Shapiro I.I., Rogers A.E.E., and Elgered G. 1985. Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio science, 20(6), 1593-1607.
8- Deeter M.N. 2007. A new satellite retrieval method for precipitable water vapor over land and ocean. Geophysical research letters, 34(2).
9- Dietrich S.V.R., Johnsen K.P., Miao J., Heygster G. 2004. Comparison of tropospheric water vapour over Antarctica derived from AMSUB data, ground-based GPS data and the NCEP/NCAR reanalysis. Journal of the Meteorological Society of Japan. Ser. II, 82(1B), 259-267.
10- Divakarla M. G., Barnet C. D., Goldberg M. D., McMillin L. M., Maddy E., Wolf, W., and Liu X. 2006. Validation of Atmospheric Infrared Sounder temperature and water vapor retrievals with matched radiosonde measurements and forecasts. Journal of Geophysical Research: Atmospheres, 111(D9).
11- Durre I., Vose R.S., and Wuertz D.B. 2006. Overview of the integrated global radiosonde archive. Journal of Climate, 19(1), 53-68.
12- Elgered G., Johansson J.M., Rönnäng B. O., and Davis J. L. 1997. Measuring regional atmospheric water vapor using the Swedish permanent GPS network. Geophysical Research Letters, 24(21), 2663-2666.
13- Ferrare R., Brasseur L., Clayton M., Turner D., Remer L., and Gao B.C. 2002. Evaluation of TERRA aerosol and water vapor measurements using ARM SGP data. In American Meteorological Society 11th Conference on Atmospheric Radiation, Ogden, Utah (pp. 3-7).
14- Gao B., and Kaufman Y. J. 1998. The MODIS Near-IR water vapor algorithm: product ID: MOD05-total precipitable water, algorithm technical background document. Remote Sensing Division, Code, 7212.
15- Gao B.C., Yang P., Guo G., Park S.K., Wiscombe W.J., and Chen B. 2003. Measurements of water vapor and high clouds over the Tibetan Plateau with the Terra MODIS instrument. IEEE Transactions on geoscience and remote sensing, 41(4), 895-900.
16- Gui K., Che H., Chen Q., Zeng Z., Liu H., Wang Y., and Zhang X. 2017. Evaluation of radiosonde, MODIS-NIR-Clear, and AERONET precipitable water vapor using IGS ground-based GPS measurements over China. Atmospheric Research, 197, 461-473.
17- Gurbuz G., and Jin S. 2017. Long‐time variations of precipitable water vapour estimated from GPS, MODIS and radiosonde observations in Turkey. International Journal of Climatology, 37(15), 5170-5180.
18- Iwabuchi T., Naito I., and Mannoji N. 2000. A comparison of Global Positioning System retrieved precipitable water vapor with the numerical weather prediction analysis data over the Japanese Islands. Journal of Geophysical Research: Atmospheres, 105(D4), 4573-4585.
19- Khaniani A.S., Nikraftar Z., and Zakeri S. 2020. Evaluation of MODIS Near-IR water vapor product over Iran using ground-based GPS measurements. Atmospheric Research, 231, 104657.
20- Li Z., Muller J. P., and Cross P. 2003. Comparison of precipitable water vapor derived from radiosonde, GPS, and Moderate‐Resolution Imaging Spectroradiometer measurements. Journal of Geophysical Research: Atmospheres, 108(D20).
21- Liu H., Tang S., Zhang S., and Hu J. 2015. Evaluation of MODIS water vapour products over China using radiosonde data. International Journal of Remote Sensing, 36(2), 680-690.
22- Lu N., Qin J., Yang K., Gao Y., Xu X., and Koike T. 2011. On the use of GPS measurements for Moderate Resolution Imaging Spectrometer precipitable water vapor evaluation over southern Tibet. Journal of Geophysical Research: Atmospheres, 116(D23).
23- Mazany R.A., Businger S., Gutman S.I., Roeder, W., 2002. A Lightning Prediction Index that Utilizes GPS Integrated Precipitable Water Vapor. Weather Forecast. 17, 1034-1047.
24- Merrikhpour M.H., and Rahimzadegan M.(2017. Improving the algorithm of extracting regional total precipitable water vapor over land from MODIS images. IEEE Transactions on Geoscience and Remote Sensing, 55(10), 5889-5898.
25- Mobasheri M.R., Purbagher Kordi S.M., Farajzadeh M., and Sadeghi Naeini A. 2008. Improvement of remote sensing techniques in TPW assessment using radiosonde data. Journal of Applied Sciences, 8(3), 480-488.
26- Mockler S. 1995. Water Vapor in the Climate System: Special Report.
27- Morisette J. T., Privette J. L., and Justice C. O. 2002. A framework for the validation of MODIS land products. Remote sensing of environment, 83(1-2), 77-96.
28- Niell A E., Coster A.J., Solheim F.S., Mendes V B., Toor P.C., Langley R.B., and Upham C.A. 2001. Comparison of measurements of atmospheric wet delay by radiosonde, water vapor radiometer, GPS, and VLBI. Journal of Atmospheric and Oceanic Technology, 18(6), 830-850.
29- Pottiaux E., and Warnant R. 2002. First comparisons of precipitable water vapor estimation using GPS and water vapor radiometers at the Royal Observatory of Belgium. GPS Solutions, 6(1-2), 11-17.
30- Pramualsakdikul S., Haas R., Elgered G., and Scherneck H.G. 2007. Sensing of diurnal and semi‐diurnal variability in the water vapour content in the tropics using GPS measurements. Meteorological Applications: A journal of forecasting, practical applications, training techniques and modelling, 14(4), 403-412.
31- Prasad A.K., and Singh R.P. 2009. Validation of MODIS Terra, AIRS, NCEP/DOE AMIP‐II Reanalysis‐2, and AERONET Sun photometer derived integrated precipitable water vapor using ground‐based GPS receivers over India. Journal of Geophysical Research: Atmospheres, 114(D5).
32- Ross R.J., and Rosenfeld S. 1997. Estimating mean weighted temperature of the atmosphere for Global Positioning System applications. Journal of Geophysical Research: Atmospheres, 102(D18), 21719-21730.
33- Sadeghi E., Mashhadi-Hossainali M., and Etemadfard H. 2014. Determining precipitable water in the atmosphere of Iran based on GPS zenith tropospheric delays. Annals of Geophysics, 57(4), 0430.
34- Sharifi M.A., Azadi M., and Khaniani A.S. (2016). Numerical simulation of rainfall with assimilation of conventional and GPS observations over north of Iran. Annals of Geophysics, 59(3), 0322.
35- Sobrino J.A., Jimenez-Muñoz J.C., Mattar C., and Sòria G. 2015. Evaluation of Terra/MODIS atmospheric profiles product (MOD07) over the Iberian Peninsula: A comparison with radiosonde stations. International Journal of Digital Earth, 8(10), 771-783.
36- Van Baelen J., Aubagnac J.P., and Dabas A. 2005. Comparison of near–real time estimates of integrated water vapor derived with GPS, radiosondes, and microwave radiometer. Journal of Atmospheric and Oceanic Technology, 22(2), 201-210.
37- Vaquero-Martinez J., Anton M., de Galisteo J.P.O., Cachorro V.E., Wang H., Abad G.G., and Costa M. J. 2017. Validation of integrated water vapor from OMI satellite instrument against reference GPS data at the Iberian Peninsula. Science of the Total Environment, 580, 857-864.
38- Wang Y., Yang K., Pan Z., Qin J., Chen D., Lin C., and Lu N. 2017. Evaluation of precipitable water vapor from four satellite products and four reanalysis datasets against GPS measurements on the Southern Tibetan Plateau. Journal of Climate, 30(15), 5699-5713.
39- Wong M.S., Jin X., Liu Z., Nichol J., and Chan P.W. 2015. Multi‐sensors study of precipitable water vapour over mainland China. International Journal of Climatology, 35(10), 3146-3159.
40- Zhai P., and Eskridge R.E. 1997. Atmospheric water vapor over China. Journal of Climate, 10(10), 2643-2652.