تعداد نشریات | 48 |
تعداد شمارهها | 1,375 |
تعداد مقالات | 14,972 |
تعداد مشاهده مقاله | 429,840 |
تعداد دریافت فایل اصل مقاله | 198,114 |
Path Planning of Mobile Robots using Deep Reinforcement Learning | ||
Computer and Knowledge Engineering | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 11 آذر 1399 | ||
نوع مقاله: Machine learning-Sadoghi | ||
شناسه دیجیتال (DOI): 10.22067/cke.2020.39287 | ||
نویسندگان | ||
Nematollah Ab azar ![]() ![]() | ||
Imam Khomeini International University | ||
چکیده | ||
This article approaches learning the path planning in mobile robots using reinforcement learning methods including Q-learning, SARSA, and multi-step-ahead prediction combined with Deep Learning method. The motivation of the authors is to formulate and solve the optimization problem of learning path planning considering avoiding obstacles and path optimality. In this regard, a reward function was constructed based on the weighted features of the environment constraints and path optimality criteria. The related algorithms have been simulated and the obtained data have been analyzed in a comparative framework. The results illustrate that using deep reinforcement learning including Deep Q-learning, Deep SARSA and Deep in mobile robot path planning leads to finding optimal path 5-10 % faster and better than pure reinforcement learning methods. | ||
آمار تعداد مشاهده مقاله: 26 |