[1] M.Samadi and M. F. Othman, “Global path planning for autonomous mobile robot using genetic algorithm”, In Signal-Image Technology & Internet-Based Systems (SITIS), 2013 International Conference on “, pp. 726-730, IEEE, 2013.
[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement learning”, arXiv preprint arXiv:1312.5602, 2013.
[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, andS. Petersen, “Human-level control through deep reinforcement learning”, Nature, 518(7540), 529, 2015.
[4] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning”, In International Conference on Machine Learning, pp. 1928-1937, 2016.
[5] H. Van Hasselt, A. Guez, A., and D. Silver, “Deep reinforcement learning with double q-learning”, In Thirtieth AAAI Conference on Artificial Intelligence, 22016.
[6] M. Wulfmeier, D. Rao, D. Z. Wang, P. Ondruska, and I. Posner, I. “Large-scale cost function learning for path planning using deep inverse reinforcement learning”, The International Journal of Robotics Research, 3936(10), 1073-1087, 2017.
[7] J. Xin, H. Zhao, D. Liu, and M. Li, “Application of deep reinforcement learning in mobile robot path planning”, In 2017 Chinese Automation Congress (CAC), pp. 7112-7116, IEEE, 2017.
[8] Y. F. Chen, M. Everett, M. Liu, and J.P. How, “Socially aware motion planning with deep reinforcement learning”, arXiv preprint arXiv:1703.08862, 2017.
[9] U. Challita, W. Saad, and C. Bettstetter, “Deep reinforcement learning for interference-aware path planning of cellular-connected UAVs”, In Proc. of International Conference on Communications (ICC), Kansas 20 City, MO, USA, 2018.
[10] Y.H. Kim, J. I. Jang, and S. Yun,” End-to-end deep learning for autonomous navigation of mobile robot”, In Consumer Electronics (ICCE), 2018 IEEE International Conference on, pp. 1-6, IEEE, 2018.
[11] A. I. Panov, K. S. Yakovlev, R. Suvorov, “Grid path planning with deep reinforcement learning: Preliminary results”, Procedia computer science, 123, 347-353. 2018.
[12] M. Pfeiffer, S. Shukla, M. Turchetta, C. Cadena, A. Krause, R. Siegwart, J. Nieto, “Reinforced Imitation: Sample Efficient Deep Reinforcement Learning for Mapless Navigation by Leveraging Prior Demonstrations”, IEEE Robotics and Automation Letters, 3(4), 4423-4430, 2018.
[13] S. Zhou, X. Liu, Y. Xu, J. Guo, “A Deep Q-network (DQN) Based Path Planning Method for Mobile Robots”, In 2018 IEEE International Conference on Information and Automation (ICIA), pp. 366-371, IEEE, 2018.
[14] L. Lv, S. Zhang, D. Ding, Y. Wang, “Path planning via an improved DQN-based learning policy”, IEEE Access, 7, 67319-67330, 2019.
[15] G. Kahn, A. Villaflor, V. Pong, P. Abbeel, S. Levine, “Uncertainty-aware reinforcement learning for collision avoidance”, arXiv preprint arXiv:1702.01182, 2017.
[16] F. L. Da Silva, P. Hernandez-Leal, B. Kartal, and M. E. Taylor, “Uncertainty-Aware Action Advising for Deep Reinforcement Learning Agents”, Proceedings of the AAAI Conference on Artificial Intelligence, 34(04), 5792-5799, 2020.
[17] R. S. Sutton, and A.G. Barto, “Introduction to reinforcement learning, Vol. 135, Cambridge: MIT press, 1998.
[18] M. W. Otte, “A survey of machine learning approaches to robotic path-planning”, University of Colorado at Boulder, Boulder, 2015.
[19] X. Lei, Z. Zhang, and P. Dong, “Dynamic path planning of unknown environment based on deep reinforcement learning”, Journal of Robotics, 2018.
[20] T. Blum, W. Jones, and K. Yoshida, “Deep Learned Path Planning via Randomized Reward-Linked-Goals and Potential Space Applications”, arXiv preprint arXiv:1909.06034, 2019.
[21] S. Lange, M. Riedmiller, and A. Voigtländer, “Autonomous reinforcement learning on raw visual input data in a real world application”, In The 2012 international joint conference on neural networks (IJCNN), pp. 1-8, IEEE, 2012.
[22] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A survey”, The International Journal of Robotics Research, 32(11), 1238-1274, 2013.
[23] P. Abbeel, and A.Y. Ng, “Apprenticeship learning via inverse reinforcement learning”, In Proceedings of the twenty-first international conference on Machine learning, p. 1, 2004.