- Abbasi, V., M. R. Nasiri, and A. Javadmanesh. 2018. Prediction and In Silico Validation of Micro-RNAs in Different Tissues Originated from Ovine Chromosome 20. Iranian Journal of Animal Science Research, 11(2): 233-245. (In Persian).
- Agarwal, S., C. Vaz, A. Bhattacharya, and A. Srinivasan. 2010. Prediction of novel precursor miRNAs using a context-sensitive hidden Markov model (CSHMM). BMC Bioinformatics, 11(1): S29.
- Arowolo, M. O., M. Adebiyi, A. Adebiyi, and O. Okesola. 2020. PCA Model For RNA-Seq Malaria Vector Data Classification Using KNN And Decision Tree Algorithm. International Conference in Mathematics, Computer Engineering and Computer Science (ICMCECS), 1–8.
- Bar, M., S. K. Wyman, B. R. Fritz, J. Qi, K. S. Garg, R. K. Parkin, E. M. Kroh, Bendoraite, P. S. Mitchell, and A. M. Nelson. 2008. MicroRNA discovery and profiling in human embryonic stem cells by deep sequencing of small RNA libraries. Stem Cells, 26(10): 2496–2505.
- Ben-Hur, A., and J. Weston. 2010. A user’s guide to support vector machines. In Data mining techniques for the life sciences Springer, Chapter 13, pages 223–239.
- Bentwich, I., A. Avniel, Y. Karov, R. Aharonov, S. Gilad, O. Barad, Barzilai, P. Einat, U. Einav, E. Meiri, E. Sharon, Y. Spector, and Z. Bentwich. 2005. Identification of hundreds of conserved and nonconserved human microRNAs. Nature Genetics, 37(7): 766–770.
- Bhaskar, H., D. C. Hoyle, and S. Singh. 2006. Machine learning in bioinformatics: A brief survey and recommendations for practitioners. Computers in Biology and Medicine, 36(10): 1104–1125.
- Cao, J., C. Tong, X. Wu, J. Lv, Z. Yang, and Y. Jin. 2008. Identification of conserved microRNAs in Bombyx mori (silkworm) and regulation of fibroin L chain production by microRNAs in heterologous system. Insect Biochemistry and Molecular Biology, 38(12): 1066–1071.
- Cordero, J., V. Menkovski, and J. Allmer. 2019. Detection of pre-microRNA with Convolutional Neural Networks. bioRxiv, Europe PMC, 1-12.
- Ding, J., S. Zhou, and J. Guan. 2010. MiRenSVM: towards better prediction of microRNA precursors using an ensemble SVM classifier with multi-loop features. BMC Bioinformatics, 11 Suppl 1(Suppl 11): S11.
- Do, B. T., V. Golkov, G. E. Gürel, and D. Cremers. 2018. Precursor microRNA Identification Using Deep Convolutional Neural Networks. BioRxiv, 414656.
- Fu, X., W. Zhu, L. Cai, B. Liao, L. Peng, Y.Chen, and J. Yang. 2019. Improved pre-miRNAs identification through mutual information of pre-miRNA sequences and structures. Frontiers in Genetics, 10(FEB): 1–12.
- He, P., Z. Nie, J. Chen, Z. Lv, Q. Sheng, S. Zhou, X. Gao, L. Kong, and X. Wu. 2008. Identification and characteristics of microRNAs from Bombyx mori. BMC Genomics, 9(1): 248.
- Huang, Y., Q. Zou, S. Tang, L. Wang, and X. Shen. 2010. Computational identification and characteristics of novel microRNAs from the silkworm (Bombyx mori L.). Molecular Biology Reports. 37: 3171–3176.
- Jabbar, M. A., and S. Samreen. 2016. Heart disease prediction system based on hidden naïve bayes classifier. International Conference on Circuits, Controls, Communications and Computing (I4C): 1–5.
- Jiang, P., H. Wu, W. Wang, W.Ma, X. Sun, and Z. Lu. 2007. MiPred: Classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Research, 35(SUPPL.2): W339-W344.
- Kadri, S., V. Hinman, and P. V. Benos. 2009. HHMMiR: efficient de novo prediction of microRNAs using hierarchical hidden Markov models. BMC Bioinformatics, 10(Suppl 1): S35.
- Kozomara, A., M. Birgaoanu, and S. Griffiths-Jones. 2018. miRBase: from microRNA sequences to function. Nucleic Acids Research, 47(D1): D155–D162.
- Lai, E. C., P. Tomancak, R. W. Williams, and G. M. Rubin. 2003. Computational identification of Drosophila microRNA genes. Genome Biology, 4(7): R42.
- Larranaga, P., B. Calvo, R. Santana, C. Bielza, J. Galdiano, I. Inza, J. A. Lozano, Armananzas, G. Santafé, and A. Pérez. 2006. Machine learning in bioinformatics. Briefings in Bioinformatics, 7(1): 86–112.
- Li, L., J. Xu, D. Yang, X. Tan, and H. Wang. 2010. Computational approaches for microRNA studies: a review. Mammalian Genome, 21(1–2): 1–12.
- Li, S.C., C.K. Shiau, and W. Lin. 2007. Vir-Mir db: prediction of viral microRNA candidate hairpins. Nucleic Acids Research, 36(suppl_1): D184–D189.
- Lim Lee, P., C. Lau Nelson, G. Weinstein Earl, Y. S. Abdelhakim Aliaa, W. Rhoades Matthew, B. Burge Christopher, and P. Bartel David. 2003. The microRNAs of Caenorhabditis elegans. Genes Dev, 17(8): 991–1008.
- Lindow, M., and J. Gorodkin. 2007. Principles and limitations of computational microRNA gene and target finding. DNA and Cell Biology, 26(5): 339–351.
- Liu, C.G., G. A. Calin, B.Meloon, N. Gamliel, C. Sevignani, M. Ferracin, C. D. Dumitru, M. Shimizu, S. Zupo, and M. Dono. 2004. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proceedings of the National Academy of Sciences, 101(26): 9740–9744.
- Lou, S., T. Sun, H. Li, and Z. Hu. 2018. Mechanisms of microRNA-mediated gene regulation in unicellular model alga Chlamydomonas reinhardtii. Biotechnology for Biofuels, 11(1): 244.
- Magyar, L. 2018. A Review of the Utility of Bayesian Network Models. The University of Akron, ideaexchange.uakron.edu.1-28.
- Mendes, N. D., A. T. Freitas, and M.F. Sagot. 2009. Current tools for the identification of miRNA genes and their targets. Nucleic Acids Research, 37(8): 2419–2433.
- Milagro, F. I., J. Miranda, M. P. Portillo, A. Fernandez-Quintela, J. Campion, and J. A. Martínez. 2013. High-throughput sequencing of microRNAs in peripheral blood mononuclear cells: identification of potential weight loss biomarkers. PloS One, 8(1): e54319.
- Nam, J. W., J. Kim, S. K. Kim, and B. T. Zhang. 2006. ProMiR II: a web server for the probabilistic prediction of clustered, nonclustered, conserved and nonconserved microRNAs. Nucleic Acids Research, 34(suppl_2): W455–W458.
- Nam, J. W., K. R. Shin, J. Han, Y. Lee, V. N. Kim, and B. T. Zhang. 2005. Human microRNA prediction through a probabilistic co-learning model of sequence and structure. Nucleic Acids Research, 33(11): 3570–3581.
- Nelson, P. T., D. O. N. A. Baldwin, W. P. Kloosterman, S. Kauppinen, R. H. A. Plasterk, and Z. Mourelatos .2006. RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. Rna, 12(2): 187–191.
- Ng, K. L. S., and S. K. Mishra. 2007. De novo SVM classification of precursor microRNAs from genomic pseudo hairpins using global and intrinsic folding measures. Bioinformatics, 23(11): 1321–1330.
- Ntranos, V., L. Yi, Melsted, and L. Pachter. 2019. A discriminative learning approach to differential expression analysis for single-cell RNA-seq. Nature Methods, 16(2): 163-166.
- Oulas, A., A. Boutla, K. Gkirtzou, M. Reczko, K. Kalantidis, and P. Poirazi. 2009. Prediction of novel microRNA genes in cancer-associated genomic regions—a combined computational and experimental approach. Nucleic Acids Research, 37(10): 3276–3287.
- Paicu, C., I. Mohorianu, M. Stocks, P. Xu, A. Coince, M. Billmeier, T. Dalmay, V. Moulton, and S. Moxon. 2017. miRCat2: accurate prediction of plant and animal microRNAs from next-generation sequencing datasets. Bioinformatics, 33(16): 2446-2454.
- Ritchie, W., D. Gao, and J. E. J. Rasko. 2012. Defining and providing robust controls for microRNA prediction. Bioinformatics, 28(8): 1058–1061.
- Saçar, M. D., and J. Allmer. 2014. Machine learning methods for microRNA gene prediction. In miRNomics: MicroRNA Biology and Computational Analysis. Springer, 1107:177-87
- Saçar, M. D., H. Hamzeiy, and J. Allmer. 2013. Can MiRBase provide positive data for machine learning for the detection of MiRNA hairpins? Journal of Integrative Bioinformatics, 10(2): 1–11.
- Sheng, Y., P. G. Engström, and B. Lenhard. 2007. Mammalian microRNA prediction through a support vector machine model of sequence and structure. PloS One, 2(9): e946.
- Singh, S., and R. Singh. 2017. Application of supervised machine learning algorithms for the classification of regulatory RNA riboswitches. Briefings in Functional Genomics, 16(2): 99–105.
- Siomi, H., and M. C. Siomi. 2010. Posttranscriptional regulation of microRNA biogenesis in animals. Molecular Cell, 38(3): 323–332.
- Terai, G., T. Komori, K. Asai, and T. Kin. 2007. miRRim: a novel system to find conserved miRNAs with high sensitivity and specificity. Rna, 13(12): 2081–2090.
- Tong, C., Y. Jin, and Y. Zhang. 2006. Computational prediction of microRNA genes in silkworm genome. Journal of Zhejiang University Science B, 7(10): 806–816.
- Tran, V. D. T., S. Tempel, B. Zerath, F. Zehraoui, and F. Tahi. 2015. miRBoost: boosting support vector machines for microRNA precursor classification. RNA (New York, N.Y.), 21(5): 775-785.
- Várallyay, E., J. Burgyán, a nd Z. Havelda. 2007. Detection of microRNAs by Northern blot analyses using LNA probes. Methods, 43(2): 140–145.
- Wang, X., S. M. Tang, and X. J. Shen. 2014. Overview of research on Bombyx mori microRNA. Journal of Insect Science, 14(133): 133.
- Wu, Y., B. Wei, H. Liu, T. Li, and S. Rayner. 2011. MiRPara: a SVM-based software tool for prediction of most probable microRNA coding regions in genome scale sequences. BMC Bioinformatics, 12(1): 107.
- Xue, C., F. Li, T. He, G.P. Liu, Y. Li, and X. Zhang. 2005. Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC Bioinformatics, 6: 310.
- Xue, H., Z. Wei, K. Chen, Y. Tang, X. Wu, J. Su, and J. Meng. 2020. Prediction of RNA methylation status from gene expression data using classification and regression methods. Evolutionary Bioinformatics, 16: 1176934320915707.
- Yousef, M., S. Jung, V. Kossenkov, L. C. Showe, and M. K. Showe. 2007. Naïve Bayes for microRNA target predictions—machine learning for microRNA targets. Bioinformatics, 23(22): 2987–2992.
- Yu, X., Q. Zhou, S.C. Li, Q. Luo, Y. Cai, W. Lin, Chen, Y. Yang, S. Hu, and J.Yu. 2008. The silkworm (Bombyx mori) microRNAs and their expressions in multiple developmental stages. PloS One, 3(8): e2997.
- Zhang, G., Y. Deng, Q. Liu, B. Ye, Z. Dai, Y. Chen, and X. Dai. 2020. Identifying circular RNA and predicting its regulatory interactions by machine learning. Frontiers in Genetics, 11: 655.
- Zhang, Y. Q., J. C. Rajapakse, and B. T. Zhang. 2008. Supervised Learning Methods for MicroRNA Studies. Machine Learning in Bioinformatics, Chapter 16, page 339.
- Zheng, K., Z. H. You, L. Wang, Y. Zhou, P. Li, and Z. W. Li. 2019. MLMDA: A machine learning approach to predict and validate MicroRNA-disease associations by integrating of heterogenous information sources. Journal of Translational Medicine, 17(1): 1–14.
- Zheng, X., X. Fu, K. Wang, and M. Wang. 2020. Deep neural networks for human microRNA precursor detection. BMC Bioinformatics, 21(1): 1-7.
- Zhong, L., and J. T. L. Wang. 2016. Effective Classification of MicroRNA Precursors Using Combinatorial Feature Mining and AdaBoost Algorithms. ArXiv:1610.02281,ui.adsabs.harvard.edu.
|