1- Batool S., and Iqbal A. 2018. Phosphate solubilizing rhizobacteria as alternative of chemical fertilizer for growth and yield of Triticum aestivum (Var. Galaxy 2013). Saudi Journal of Biological Sciences 2018: 1-11.
2- Besharati H., Khosravi H., Khavazi K., Ziaeian A., Mirzashahi K., Ghaderi J., Zabihi H.R., Mostashari M., Sabah A., and Rashidi N. 2018. Effects of biological oxidation of sulfur on soil properties and nutrient availability in some soils of Iran. Journal of Soil Research 31(3): 393-404. (In Persian with English abstract)
3- Bouranis D.L., Venieraki A., Chorianopoulou S.N., and Katinakis P. 2019. Impact of elemental sulfur on the rhizospheric bacteria of durum Wheat crop cultivated on a calcareous Soil. Plants 8: 1-21.
4- Chen Y.P., Rekha P.D., Arunshen A.B., Lai W.A., and Young C.C. 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology 34: 33-41.
5- Dabaghian Z., Pirdashti H., Abasian A., and Bahari Saravi S.H. 2014. The effect of biofertilizers, Thiobacillus, Azotobacter, Azospirillum and organic sulfur on nodulation process and yield of soybean (Glycine max L. Merr.). Agronomy Journal 107: 17-25. (In Persian with English abstract)
6- Dawwam G.E., Elbeltagy A., Emara H.M., Abbas I.H., and Hassan M.M. 2013. Beneficial effect of plant growth promoting bacteria isolated from the roots of potato plant. Annals of Agricultural Science 58(2): 195-201.
7- Ekin Z. 2010. Performance of phosphate solubilizing bacteria for improving growth and yield of sunflower (Helianthus annuus L.) in the presence of phosphorus fertilizer. African Journal of Biotechnology 9(25): 3794-3800.
8- El-Komy H.M.A. 2005. Co-immobilization of Azospirillum lipoferum and Bacillus megaterium for successful phosphorus and nitrogen nutrition of wheat plants. Food Technol. Biotechnol 43(1): 19-27.
9- Fallah A. 2006. Abundance and distribution of phosphate solubilizing bacteria and fungi in some soil samples from north of Iran. 18th World Congress of Soil Science, July 9-15, 2006, Philadelphia, Pennsylvania, USA.
10- Ghodsalavi B., Soleimani M., Ahmadzade M., and Soleimani S. 2014. Phosphate dissolution potential and symbiotic efficiency of bacteria isolated from the rhizosphere Valerian medicinal plant. Science and Techniques of Greenhouse Culture 4(13): 61-71. (In Persian with English abstract)
11- Gull M., Hafeez F.Y., Saleem M., and Malik K.A. 2004. Phosphorus uptake and growth Promotion of chickpea by co-inoculation of mineral phosphate solubilizing bacteria and a mixed rhizobial culture. Australian Journal of Experimental Agriculture 44: 623-628.
12- Karimian N. 2009. Consequences of excessive consumption of phosphate fertilizers. Journal of Soil and Water Sciences 12: 1-12. (In Persian with English abstract)
13- Khavazi K., Jahandideh Mahjen Abadi V.A., and Taghipoor F. 2018. Effect of Sulfur, Thiobacillus bacteria and phosphorus on the yield and nutrient elements uptake of wheat in calcareous soil.Journal of Soil Management and Sustainable 8(2): 23-41. (In Persian with English abstract)
14- Khan A.A., Jilani G., Akhtar M.S., Saqlan Naqvi S.M., and Rasheed M. 2009. Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. Journal of Agricultural and Biological Science 1(1): 48-58.
15- Malakooti M.G., Keshavarz P., and Karimian N.A. 2005. Comprehensive method of diagnosis and optimal recommendation of fertilizer for sustainable agriculture. Tarbiat Modarres University Press, Tehran.
16- Mashayekhi P., and Solhi M. 2010. Perspective of fertilizer consumption in Iran and the world. P. 26- 33. 1th congress of fertilizer challenges in Iran: Half century of fertilizer consumption. 10-12 March. 2010 Tehran, Iran.
17- Nelson R.E. 1982. Carbonate and Gypsum. In: A.L. Page (Eds.), Methods of Soil Analysis. Part2. American Society of Agronomy, Inc. Madison, Wisconsin. USA, 45-75.
18- Pérez E., Sulbarán M., Ball M.M., and Yarzabál L.A. 2007. Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the southeastern Venezuelan region. Soil Biology and Biochemistry 39(11): 2905-2914.
19- Pereira S.I.A., and Castro P.M.L. 2014. Phosphate-solubilizing rhizobacteria enhance Zea mays growth in agricultural P-deficient soils. Ecological Engineering 73: 526-535.
20- Pikovskaya R.I. 1948. Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya17: 362-370
21- Puente M., and Bashan Y. 2004. Microbial populations and activities in the rhizoplane of rock- weathering desert plants. Growth promotion of cactus seedlings. Plant Biology 6: 643-650
22- Rodrıguez H., and Fraga R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances 17: 319–339.
23- Sadeghipour Marvi M., Pourbabaee A.A., Alikhani H.A., Haidari A., and Manafi Z. 2017. Isolation and identification of sulfur oxidizing bacteria in agricultural soil and evaluating sulfur oxidation yield. Biological Journal of Microorganism 6(22): 113-125. (In Persian with English abstract)
24- Salimpour S., Khavazi K., Nadian H., Besharati H., and Miransari M. 2010. Enhancing phosphorous availability to canola (Brassica napus L.) using P solubilizing and sulfur oxidizing bacteria. Australian Journal Crop Science 4(5): 330-334.
25- Sarikhani M.R., Malboobi M.A., and Ebrahimi M. 2015. Phosphate solubilizing bacteria: Isolation of bacteria and phosphate solubilizing genes, mechanism and genetics of phosphate solubilization. Journal of Agriculture Biotechnology 6(1): 75-110. (In Persian with English abstract)
26- Saha N., and Biswas S. 2009. Mineral phosphate solubilizing bacterial community in agro-ecosystem. African Journal of Biotechnology 8(24): 6863-6870.
27- Sundra B., Natarajan V., and Hari K. 2002. Influence of Phosphorus solubilizing bacteria of chenges in soil available phosphorus and sugarcane and suger yield. Field Crops Research 43-49.
28- Tashakori Fard E., Pirdashti H., and Taghavi Ghasemkhili F. 2010. The importance and position of fertilizers in traditional and sustainable agriculture in Iran and the world. P. 39-47. 1th congress of fertilizer challenges in Iran: Half century of fertilizer consumption. 10-12 March. 2010 Tehran, Iran.
29- Vazquez P., Holguin G., Puente M.E., Lopez-Cortes A., and Bashan Y. 2000. Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Biology and Fertility of Soils 30: 460-468.
30- Walkly A., and Black I.A. 1934. An examination of the degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science 37: 29-38.
31- Westerman R.E.L. 1990. Soil testing and plant analysis. Soil Science Society of America.
32- Whitelaw M.A., Harden T.J., and Bender G.L. 1997. Plant growth promotin of wheat inoculated with Penicillium radicum sp. Australian Journal of Soil Research 35: 291-300.
33- Yazdani M., Pirdashti H., Esmaili M.A., and Bahmanyar M.A. 2011. Effect of inoculation phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on nutrient use efficiency in corn (Zea mays L.) cultivation. 3(2): 65-80. (In Persian with English abstract)