تعداد نشریات | 49 |
تعداد شمارهها | 1,798 |
تعداد مقالات | 19,109 |
تعداد مشاهده مقاله | 8,395,392 |
تعداد دریافت فایل اصل مقاله | 5,725,833 |
مطالعه تأثیر فلزات سنگین کادمیم و سرب بر خصوصیات رشد و ویژگیهای کیفی گیاه دارویی بادرنجبویه | ||
علوم باغبانی | ||
مقاله 6، دوره 35، شماره 2 - شماره پیاپی 50، شهریور 1400، صفحه 235-251 اصل مقاله (1.44 M) | ||
نوع مقاله: مقالات پژوهشی | ||
شناسه دیجیتال (DOI): 10.22067/jhs.2021.61820.0 | ||
نویسندگان | ||
سید محمد باقر رضوی نیا1؛ نسیبه پورقاسمیان* 2؛ فرزاد نجفی1 | ||
1پژوهشکده گیاهان و مواد اولیه دارویی، دانشگاه شهید بهشتی تهران، تهران | ||
2گروه تولیدات گیاهی، دانشکده کشاورزی بردسیر، دانشگاه شهید باهنر کرمان، کرمان، ایران | ||
چکیده | ||
آلودگی خاک به فلزات سنگین به دلیل خطرات زیست محیطی که برای سلامت انسان دارد، در سالهای اخیر مورد توجه بسیاری از محققین قرار گرفته است. به منظور بررسی واکنشهای زیستی گیاه دارویی بادرنجبویه (Melissa officinalis) در شرایط تنش کادمیم و سرب، این مطالعه در طرح فاکتوریل و در قالب بلوک کامل تصادفی با چهار تکرار در شرایط گلخانهای انجام شد. کادمیم در چهار سطح (صفر، 6، 12 و 24 میلیگرم کادمیم در کیلوگرم خاک) به عنوان فاکتور اول و سرب در چهار سطح (صفر، 150، 300 و 450 میلیگرم سرب در کیلوگرم خاک) به عنوان فاکتور دوم در نظر گرفته شد. نتایج نشان داد با افزایش غلظت کادمیم و سرب وزن خشک اندام هوایی و ریشه، میزان پروتئین، میزان فتوسنتز، سرعت تعرق و کارایی فلورسانس کلروفیل کاهش معنیدار یافت، با این وجود، این کاهش در حضور کادمیم بیش از سرب مشاهده شد. اثر متقابل دو عنصر نیز صفات مذکور را کاهش داد. همچنین میزان مالون دی آلدهید، درصد اسانس و پرولین با افزایش غلظت هر دو عنصر در محیط افزایش یافت. با اینحال اثر متقابل دو عنصر بر صفات مذکور نشان داد که همراهی دو عنصر با یکدیگر باعث کاهش اثر منفی هر یک از عناصر به تنهایی میشود. افزایش غلظت هریک از عناصر کادمیم و سرب به تنهایی غلظت همان عنصر را در بخش هوایی و ریشه به طور معنیداری افزایش داد و این مسئله بیانگر رابطه مستقیم بین مقدار فلز در محیط و جذب آن توسط گیاه است. غلظت کادمیم در بخش هوایی و ریشه در بالاترین سطح کادمیم (24 میلیگرم بر کیلوگرم خاک) ، به ترتیب 96/1و 98/0(میکروگرم بر گرم وزن خشک) گزارش شد. غلظت سرب در بخش هوایی و ریشه در بالاترین سطح آن (450 میلیگرم برکیلوگرم خاک) به ترتیب 55/3 و 02/2 (میکروگرم بر گرم وزن خشک) گزارش شد. همچنین اثر متقابل دو عنصر نشان داد که افزایش کادمیم در محیط باعث کاهش غلظت سرب در گیاه شد و افزایش غلظت سرب در محیط باعث کاهش غلظت کادمیم در گیاه شد. هیچ یک از دو عنصر سرب و کادمیم در اسانس این گیاه مشاهده نشد. همچنین در سطوح 12 و 24 میلیگرم کادمیم در کیلوگرم خاک (سطوح بالای کادمیم)، افزایش غلظت سرب از 150 به 450 میلیگرم، فاکتور انتقال کادمیم را 97/6 و 26/11 درصد افزایش داد. از مطالعه حاضر می توان دریافت که به طور کلی، گیاه از کادمیم بیشتر از سرب آسیب دیده و اثر بازدارندگی کادمیم و سرب روی یکدیگر تقریباً در تمام صفات مشاهده شد، همچنین با توجه به عدم حضور عناصر در اسانس، شاید بتوان گیاه بادرنجبویه را به عنوان گزینه مناسبی جهت کشت در مناطق آلوده معرفی نمود. | ||
کلیدواژهها | ||
اسانس؛ پرولین و پروتئین؛ فلورسانس کلروفیل؛ سرعت تنفس | ||
مراجع | ||
1- Abdel-Salam A.A., Salem H.M., and Seleiman M.F. 2015. Phytochemical Removal of Heavy Metal -Contaminated Soils. Heavy Metal Contamination of Soils. Springer International Publishing. 299-309. 2- Ahamed M., and Siddiqui M.K. 2007. Low level lead exposure and oxidative stress. Clinica Chimica Acta 383: 57-64. 3- Ali A., Deng X., Hu X., Gill R.A., Ali S., Wang S., and Zhou W. 2015. Deteriorative effects of cadmium stress on antioxidant system and cellular structure in germinating seeds of Brassica napus L. Journal of Agricultural Science and Technology 17: 63-74. 4- Alinezhad Jahromi H., Mohamadkhani A., and Salehi H. 2012. The Effect of Using Urban Wastewater of ShahreKord on Growth, Yield and Accumulation of Lead and Cadmium in Medicinal Plant Lemon Balm (Melissa officinalis). Water and Soil Science 16(60): 32-41 5- Alloway B. 1990. Heavy metals in soils. Blakie and Sons Ltd. London. Pp: 1-53. 6- Anusha W.A., Wickramasinghe d.l., and Valentine B.R. 2017. The effects of heavy metal concentration on bio-accumulation. Sri Lanka Journal of Aquatic Sciences 22(1): 1-8. 7- Bafeel S. 2010. Physiological and biochemical aspects of tolerance in Lepidium sativum, to lead toxicity. Egyptian Society for Environmental Sciences 5(1): 1-7. 8- Baker A.J.M., and Brooks R.R. 1989. Terrestrials higher plants which hyper accumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery 1: 81-26. 9- Boussen S., Soubrand M., Bril H., Ouerfelli K., and Abdeljaouad S. 2013. Transfer of lead, zinc and cadmium from mine tailings to wheat (Triticum aestivum) in carbonated Mediterranean (Northern Tunisia) soils. Geoderma 192: 227-236. 10- Broadley M.R., White P.J., and Hammond J.P. 2007. Zinc in plants. New Phytolgy 173: 677-702. 11- Burzynski M., and Klobu G. 2004. Changes of photosynthetic parameters in cucumber leaves under Cu, Cd, and Pb stress. Photosynthetica 42(4): 505-510. 12- Cosge B., Ipek A., and Gurbuz B. 2009. GC/MS analysis of herbage essential oil from lemon balms (Melissa officinalis L.) grown in Turkey. Journal of Applied Biological Sciences 3(2): 136-139. 13- De B., and Mukherjee A.K. 1998. Mercury induced metabolic changes in seedlings and cultured cells of tomato. Geobios 23: 83-88. 14- Dezhban T.A., Shirvany A., Attarod P., Delshad M., Matinizadeh M., and Khoshnevis M. 2015. Cadmium and lead effects on chlorophyll fluorescence, chlorophyll pigments and proline of Robinia pseudoacacia. Journal of Forestry Research 26(2): 323–329. 15- Dotaniya M.L., Rajendiran S., Vassanda M., Coumar V.D., Meena J.K., Saha S., Kundu A., and Kumar A. K. 2017. Interactive effect of cadmium and zinc on chromium uptake in spinach grown in Vertisol of Central India. International Journal of Environmental Science and Technology 15(1): 462-477. 16- Eisazadeh L, S., Asadi S., and Homaee M. 2015. Phytoextraction and estimating optimal time for remediation of Cd-contaminated soils by spinach (Spinacia oleracea L.). Journal of Agroecology 4(2): 916-926. (In Persian) 17- Elzbieta W.C., and Chwil M. 2005. Lead-induced histological and ultra structural changes in the leaves of soybeen (Glycine max (L) Meee.). Soil Sciences and Plant Nutrition 51: 203-212. 18- Geetha S.M., Sandeep A., and Gharge S. 2018. Effect of metal on germination and proline accumulation in Spinacia olerci. International Journal of Current Research in Life Sciences 7(3): 1376-1380. 19- Ghani A. 2010. Effect of cadmium toxicity on the growth and yield components of mungbean World Applied Sciences. Special Issue of Biotechnology and Genetic Engineering 8: 26-29. 20- Gupta S., Satpati S., Nayek S. and Garai D. 2010. Effect of wastewater irrigation on vegetables in relation to bioaccumulation of heavy metals and biochemical changes. Environmental Monitoring and Assessment, 165: 169-177. 21- Heath R.L., and Packer L. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics 22- Hussein F.H., Khalife R.K.M., El-Mergawi R.A., and Youssef A.A. 2006. Utilization of Treated Municipal 342. P 23- Kashif S.R., Akram M., Yasee M., and Ali S. 2009. Studies on heavy metals status and their uptake by vegetables in adjoining areas of Hudiara drain in Lahore. Soil Environmental 28: 7-12. 24- Khan S., and Khan N.N. 1983. Influence of lead and cadmium on the growth and nutrient concentration of tomato (Lycopersocum esculentum) and egg plant (Solanum melongena). Plant and Soil 74: 387-394. 25- Li W., Mao R., and Liu X. 2005. Effects of stress duration and non toxicions on heavy metals toxicity to Arabidopsis seed germination and seedling growth. Ying Yong Sheng Tai Xue Bao 16:1943-7. 26- Lim J.M., M., Salido A.L., and Butcher D.J. 2004. Phytoremediation of lead using Indian mustard (Brassica Juncea) with EDTA and electrodics. Microchemical Journal 76: 3-9 27- Lippia H.B.K., Metwally A., Safronova V.I., Belimov A.A., and Dietz K.J. 2008. Genotypic variation of the response to cadmium toxicity in Pisum sativum. Journal of Experimental Botany 56: 167. 28- Mipapazoglou M. 2009. Foresight and research priorities for service oriented computing, in: Proceedings of the 11th International Conference on Enterprise Information Systems, Milan, Italy, pp. 5–6 29- Maxwell K., and Johnson G.N. 2005. Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany 51: 659-668. 30- Miladinova K., Markovska Y., Tzvetkova N., Ivanova K., Geneva M., and Georgieva T. 2014. Photosynthesis and growth response of two Paulownia hybrid lines to heavy metals Cd, Pb and Zn. Silva Balcanica 15: 83-99. 31- Moya J.L., Ros R., and Picazo I. 1993. Influence of cadmium and nickel on growth, net photosynthesis and carbohydrate distribution in rice plants. Photosynthesis Research 36: 75-80. 32- Naser H.M., Shil N.C., Mahmud N.U., Rashid M.H. and Hossain K.M. 2009. Lead, cadmium and nickel contents of vegetables grown in industrially polluted and non-polluted areas of Bangladesh. Bangladesh Journal of Agrilcultural Research 34(4): 545-554. 33- Omidbeigi R. 2008. Production and processing of medicinal plants. Volume Three, Astan Quds Razavi Publications. (In Persian) 34- Pinto D., Fernandes A., Fernandes R., Mendes I., Pereira S., Vinha A., Herdeiro T., Santos E., and Machado M. 2011. Determination of heavy metals and other indicators in waters, soils and medicinal plants from Ave Valley, in Portugal, and its correlation to urban and industrial pollution. Science against microbial pathogens. In: A. Méndez-Vilas (ed.), communicating current research and technological advances. Spain. 303-309. 35- Pourghasemian N., Ehsanzadeh P., and Greger M. 2013a. Genotypic variation in safflower (Carthamus spp.) cadmium accumulation and tolerance affected by temperature and cadmium levels. Environmental and Experimental Botany 87: 218–226. 36- Pourghasemian N., and Ehsanzadeh P. 2013b. Evaluation of antioxidative responses to cadmium contamination of soil and its relationship with some physiological traits in safflower genotypes. Journal of Plant Process and Function 2(3): 15-31. (In Persian) 37- Puschenreiter M., and Horak O. 2000. Influence of different soil parameters on the transfer factor soil to plant of Cd, Cu and Zn for wheat and rye. Die Bodenkulture 51(1): 3-10. 38- Rai V., Vajpayee P., Singh S.N., and Mehrotra S., 2004. Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, prolin level and eugenol content of Ocimum tenuiflorum L. Plant Science 167: 1159-1169 39- Romanowska E., Igamberdiev A., Parys E., and Gardestron P. 2002. Stimulation of respiration by Pb2+ ions in detached leaves and mitochondria of C3 and C4 plants. Plant Physiology 116: 148-154. 40- Sanita di Toppi L., and Gabbrielli R. 1999. Response to cadmium in higher plants. Environmental and Experimental Botany 41: 105-130. 41- Scavroni J., Sivia Fernandes Boaro C., Ortiz Mayo Marques M., and Cesar Ferreira L. 2005. Yield and composition of the essential oil of Mentha piperita L. (Lamiaceae) grown with biosolid. Brazilian Journal of Plant Physiology 17(4): 345-352. 42- Sharma S.S., and Dietz K.J. 2006. The significance of amino acids and amino acid derivedmolecules in plant responses and adaptation to heavy metal stress, Journal of Experimental Botany 57: 711–726. 43- Shomali R., and khodaverdilo H. 2011. Contamination of Soils and Plants along Urmia-Salmas Highway (Iran) to Some Heavy Metals, Journal scince of water and soil. Volume 22, number 3. 44- Sidhu G.P., Singh H.P., Batish D.R., and Kohli R.K. 2017. Tolerance and hyperaccumulationof cadmium by a wild, unpalatable herb Coronopus didymus (L.) sm. (Brassicaceae). Ecotoxicology Environmental Safety 135: 209-215. 45- Skórzyńska-Polit E., and Baszyński T. 1997. Diferences in sensitivity of the photosynthetic apparatus in Cd-stressed runner bean plants in relation to their age. Plant Science. 128: 11-21. 46- Subrahmanyam D., and Rathore V.S. 2000. Influence of manganase toxicity on photosynthesis in ricebean (Vigna umbellata) seedlings. Photosynthetica 38: 449-453. 47- Turkan I., Bor M.O., zdemir F., and Koca H. 2005. Differential responses of lipid peroxidation and antioxidants in the leaves of drought-tolerant P. acutifolius Gray and drought-sensitive P. vulgaris L. subjected to polyethylene glycol mediated water stress. Plant Science 168: 223-231. 48- Wang C., Tian Y., Wang X., Geng J., Jiang J., and Yu H. 2010. Lead-contaminated soil induced oxidative stress, defense response and its indicative biomarkers in roots of Vicia faba seedlings. Ecotoxicology 19: 1130–1139. 49- Xiaolong H., Hang H., Liping C., Aiqin L., Xiangqing M., Chuifan Z., Guo W., and Fanrui M. 2018. Pb stress effects on leaf chlorophyll fluorescence, antioxidative enzymeactivities, and organic acid contents of Pogonatherum crinitum seedlings. Flora 240: 82–88. 50- Yaghoubian Y., Sayadat A., Moradi M., and Pirdashti H. 2016. Quantitative response of vegetative growth and chlorophyll components of the medicinal plant lemonbalm (Melissa officinalis L.) To the concentration of cadmium in the soil. Journal of Plant Production Research Volume 23. Number 2. (In Persian) 51- Yong Z., Hao-Ru T., and Ya L. 2008.Variation in antioxidant enzyme activities of two strawbreey cultivars with shortterm low temperature stress. Journal of Agricultural Sciences 4: 456-462. 52- Žaltauskaitė1 J., Mikalaikevičiūtė1 L., Sujetovienė G., and Miškelytė D. 2017. Evaluation of heavy metals binary metals mixtures toxicity on spring barley Hordeumvulgare. International Conference on Environmental Science and Technology Rhodes, Greece. 53- Zheljazkov V.D., Craker L.E., and Xing B. 2006. Effects of Cd, Pb and Cu on growth and essential oil contents in dill, peppermint, and basil. Environmental and Experimental Botany 58(1): 9-16. 54- Zheljazkov V.D., and Nielson N.E. 1996a. Effect of heavy metals on peppermint and cornmint. Plant and Soil 178: 59– 66. 55- Zheljazkov V., and Nielsen N.E. 1996b. Studies on the effect of heavy metals (Cd, Pb, Cu, Mn, Zn and Fe) upon the growth, productivity and quality of lavender (Lavandula angustifolia Mill) production. J. Essent. Oil Res 8, 259–274. 56- Zlatev Z., and Yordanov T. 2004. Effect of soil drought on photosynthesis and chlorophyll fluorescence in bean plants. Bulg. Journal of Plant Physiology 30(3-4): 3-18. | ||
آمار تعداد مشاهده مقاله: 919 تعداد دریافت فایل اصل مقاله: 654 |