Amit U., Kain D., Wagner A., Sahu A., Nevo-Caspi Y., Gonen N., et al. (2017) New role for interleukin- 13 receptor α1 in myocardial homeostasis and heart failure. Journal of the American Heart Association 6(5): e005108.
Babatunde O. A., Olarewaju S. O., Adeomi A. A., Akande J. O., Bashorun A., Umeokonkwo C. D., et al. (2020) 10-year risk for cardiovascular diseases using WHO prediction chart: findings from the civil servants in south-western Nigeria. BMC cardiovascular disorders 20(1): 154.
Boehm T. (2011) Design principles of adaptive immune systems. Nature Reviews Immunology 11(5): 307-317.
Bostan M. M., Stătescu C., Anghel L., Șerban I. L., Cojocaru E. and Sascău, R. (2020) Post-myocardial infarction ventricular remodeling biomarkers-the key link between pathophysiology and clinic. Biomolecules 10(11): 1587.
Braunwald E. and Kloner R. A. (1985) Myocardial reperfusion: a double-edged sword? Journal of Clinical Investigation 76(5): 1713-1719.
Cai W., Tan J., Yan J., Zhang L., Cai X., Wang H., et al. (2019) Limited regeneration potential with minimal epicardial progenitor conversions in the neonatal mouse heart after injury. Cell Reports 28(1):190–201.
Chen P., Wang L., Fan X., Ning X., Yu B., Ou C., et al. (2021) Targeted delivery of extracellular vesicles in heart injury. Theranostics 11(5): 2263–2277.
Chen G. Y. and Nuñez G. (2010) Sterile inflammation: sensing and reacting to damage. Nature Reviews Immunology 10(12): 826-837.
Choo E. H., Lee J. H., Park E. H., Park H. E., Jung N. C., et al. (2017) Infarcted myocardium-primed dendritic cells improve remodeling and cardiac function after myocardial infarction by modulating the regulatory T cell and macrophage polarization. Circulation 135(15): 1444-1457.
Condrat C. E., Thompson D. C., Barbu M. G., Bugnar O. L., Boboc A., Cretoiu D., et al. (2020) miRNAs as biomarkers in disease: latest findings regarding their role in diagnosis and prognosis. Cells 9(2): 276.
Fan Y., Cheng Y., Li Y., Chen B., Wang Z., Wei T., et al. (2020) Phosphoproteomic analysis of neonatal regenerative myocardium revealed important roles of checkpoint Kinase 1 via activating mammalian target of rapamycin C1/ribosomal protein S6 Kinase b-1 pathway. Circulation 141(19): 1554–1569.
Fang L., Moore X. L., Dart A. M. and Wang L. M. (2015) Systemic inflammatory response following acute myocardial infarction. Journal of Geriatric Cardiology 12(3): 305–312.
Frangogiannis N. G. (2014) The inflammatory response in myocardial injury, repair, and remodelling. Nature Reviews Cardiology 11(5): 255-265.
George J. (2008) Mechanisms of disease: the evolving role of regulatory T cells in atherosclerosis. Nature Clinical Practice Cardiovascular Medicine 5(9): 531-540.
Griffiths E. J. and Halestrap A. P. (1995) Mitochondrial non-specific pores remain closed during cardiac ischemia, but open upon reperfusion. Biochemical Journal 307: 93-98.
Gronewold J. and Hermann D. M. (2021) Social isolation and risk of fatal cardiovascular events. Lancet Public Health S2468-2667(21)00008-6.
Guo Y., Yu Y., Hu S., Chen Y. and Shen Z. (2020) The therapeutic potential of mesenchymal stem cells for cardiovascular diseases. Cell Death and Disease 11(5): 349.
Hausenloy D. J., Garcia-Dorado D., Bøtker H. E., Davidson S. M., Downey J., Engel F. B., et al. (2017) Novel targets and future strategies for acute cardioprotection: position paper of the European society of cardiology working group on cellular biology of the heart. Cardiovascular research 113(6): 564–585.
Hoeffel G., Wang Y., Greter M., See P., Teo P., Malleret B., et al. (2012) Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. Journal of Experimental Medicine 209(6): 1167-1181.
Hoeeg C., Dolatshahi-Pirouz A. and Follin B. (2021) Injectable hydrogels for improving cardiac cell therapy-in vivo evidence and translational challenges. Gels7(1): 7.
Hofmann U. and Frantz S. (2016) Role of T-cells in myocardial infarction. European Heart Journal 37(11): 873-879.
Hombach V., Grebe O., Merkle N., Waldenmaier S., Höher M., Kochs M., et al. (2005) Sequelae of acute myocardial infarction regarding cardiac structure and function and their prognostic significance as assessed by magnetic resonance imaging. European Heart Journal 26(6): 549-557.
Horváth M., Horváthová V., Hájek P., Štěchovský C., Honěk J., Šenolt L., et al. (2020) MicroRNA-331 and microRNA-151- 3p as biomarkers in patients with ST-segment elevation myocardial infarction. Scientific Reports 10: 5845.
Huang S. and Frangogiannis N. G. (2018) Anti-inflammatory therapies in myocardial infarction: failures, hopes and challenges. British Journal of Pharmacology 175(9): 1377–1400.
Islam J. Y., Zaman M. M., Moniruzzaman M., Ara Shakoor S. and Hossain A. (2020) Estimation of total cardiovascular risk using the 2019 WHO CVD prediction charts and comparison of population-level costs based on alternative drug therapy guidelines: a population-based study of adults in Bangladesh. BMJ open 10(7): e035842.
Kino T., Khan M. and Mohsin S. (2020) The regulatory role of T cell responses in cardiac remodeling following myocardial infarction. International Journal of Molecular Sciences 21(14): 5013.
Kubin T., Pöling J., Kostin S., Gajawada P., Hein S., Rees W., et al. (2011) Oncostatin M is a major mediator of cardiomyocyte dedifferentiation and remodeling. Cell Stem Cell 9(5): 420–432.
Lam N. T. and Sadek H. A. (2018) Neonatal heart regeneration: comprehensive literature review. Circulation 138(4): 412–423.
Lavine K. J., Epelman S., Uchida K., Weber K. J., Nichols C. G., Schilling J. D., et al. (2014) Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proceedings of the National Academy of Sciences of the United States of America 111(45): 16029-16034.
Lee S., Bartlett B. and Dwivedi G. (2020) Adaptive immune responses in human atherosclerosis. International Journal of Molecular Sciences 21(23): 932.
Lee B. C. and Kang K. S. (2020) Functional enhancement strategies for immunomodulation of mesenchymal stem cells and their therapeutic application. Stem Cell Research and Therapy 11(1): 397.
Ley K. (2016) 2015 Russell Ross memorial lecture in vascular biology: protective autoimmunity in atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology 36(3): 429-438.
Liu Z., Ma C., Gu J. and Yu M. (2019) Potential biomarkers of acute myocardial infarction based on weighted gene co-expression network analysis. BioMedical Engineering OnLine 18(1): 9.
Ma Z. J., Yang J. J., Lu Y. B., Liu Z. Y. and Wang X. X. (2020) Mesenchymal stem cell-derived exosomes: Toward cell-free therapeutic strategies in regenerative medicine. World Journal of Stem Cells 12(8): 814–840.
McNeil H. P., Simpson R. J., Chesterman C. N. and Krilis S. A. (1990) Anti-phospholipid antibodies are directed against a complex antigen that includes a lipid-binding inhibitor of coagulation: beta 2-glycoprotein I (apolipoprotein H). Proceedings of the National Academy of Sciences of the United States of America 87(11): 4120-4124.
Munshi N. V. (2017) Resident macrophages: near and dear to your heart. Cell 169(3): 376-377.
Murdolo G. and Smith U. (2006) The dysregulated adipose tissue: a connecting link between insulin resistance, type 2 diabetes mellitus and atherosclerosis.Nutrition, Metabolism & Cardiovascular Diseases 1: S35- S38.
Owen J., Punt J. and Stranford S. (2013) Kuby Immunology: International Edition. New York: W. H. Freeman.
Pan W., Zhu Y., Meng X., Zhang C., Yang Y. and Bei Y. (2019) Immunomodulation by exosomes in myocardial infarction. Journal of Cardiovascular Translational Research 12 (1): 28-36.
Pieper K., Grimbacher B. and Eibel H. (2013) B-cell biology and development. The Journal of Allergy and Clinical Immunology 131(4): 959-971.
Prabhu S. D. (2018) The cardiosplenic axis is essential for the pathogenesis of ischemic heart failure. Transactions of the American Clinical and Climatological Association 129: 202-214.
Qiu L. and Liu X. (2019) Identification of key genes involved in myocardial infarction. European Journal of Medical Research 24(1): 22.
Raedschelders K., Ansley D. M. and Chen D. D. (2012) The cellular and molecular origin of reactive oxygen species generation during myocardial ischemia and reperfusion. Pharmacology & Therapeutics 133(2): 230-255.
Rafatian N., Westcott K. V., White R. A. and Leenen F. H. (2014) Cardiac macrophages and apoptosis after myocardial infarction: effects of central MR blockade. The American Journal of Physiology - Regulatory, Integrative and Comparative Physiology 307(7): R879- R887.
Rusinkevich V., Huang Y., Chen Z. Y., Qiang W., Wang Y. G., Shi Y. F., et al. (2019) Temporal dynamics of immune response following prolonged myocardial ischemia/reperfusion with and without cyclosporine A. Acta Pharmacologica Sinica 40(9): 1168–1183.
Salaman M. R. and Gould K. G. (2020) Breakdown of T-cell ignorance: the tolerance failure responsible for mainstream autoimmune diseases?. Journal of Translational Autoimmunity 3: 100070.
Samaniyan Bavarsad P., Kheiri S. and Ahmadi A. (2020) Estimation of the 10-year risk of cardiovascular diseases: using the SCORE, WHO/ISH, and Framingham models in the Shahrekord cohort study in southwestern Iran. Journal of Tehran University Heart Center 15(3): 105–112.
Samouillan V., Martinez de Lejarza Samper I. M., Amaro A. B., Vilades D., Dandurand J., Casas J., et al. (2020) Biophysical and lipidomic biomarkers of cardiac remodeling post- myocardial infarction in humans. Biomolecules 10(11): 1471.
Santos F., Correia M., Nóbrega-Pereira S. and Bernardes de Jesus B. (2021) Age-related pathways in cardiac regeneration: a role for lncRNAs?. Frontiers in Physiology 11: 583191.
Santos-Zas I., Lemarié J., Tedgui A. and Ait-Oufella H. (2019) Adaptive immune responses contribute to post-ischemic cardiac remodeling. Frontiers in Cardiovascular Medicine 5:198.
Schüttler D., Clauss S., Weckbach L. T. and Brunner S. (2019) Molecular mechanisms of cardiac remodeling and regeneration in physical exercise. Cells 8(10): 1128.
Sherer Y. and Shoenfeld Y. (2006) Mechanisms of disease: atherosclerosis in autoimmune diseases. Nature Clinical Practice Rheumatology 2(2): 99-106.
Tadayon S., Wickramasinghe K. and Townsend N. (2019) Examining trends in cardiovascular disease mortality across Europe: how does the introduction of a new European standard population affect the description of the relative burden of cardiovascular disease? Population Health Metrics 17(1):6.
Tan S., Floriano J. F., Nicastro L., Emanueli C. and Catapano F. (2020) Novel applications of mesenchymal stem cell-derived exosomes for myocardial infarction therapeutics. Biomolecules 10(5): 707.
Thygesen K., Alpert J. S., Jaffe A. S., Chaitman B. R., Bax J. J., Morrow D. A., et al. (2018) Fourth universal definition of myocardial infarction. Journal of the American College of Cardiology 72(18): 2231–2264.
Tobin S. W., Alibhai F. J., Weisel R. D. and Li R. K. (2020) Considering cause and effect of immune cell aging on cardiac repair after myocardial infarction. Cells 9(8): 1894.
World health organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. The Lancet Global Health 7(10): e1332–e1345.
Wynn T. A. (2015) Type 2 cytokines: mechanisms and therapeutic strategies. Nature Reviews Immunology 15(5): 271-282.
Zacchigna S., Martinelli V., Moimas S., Colliva A., Anzini M., Nordio A., et al. (2018) Paracrine effect of regulatory T cells promotes cardiomyocyte proliferation during pregnancy and after myocardial infarction. Nature communications 9(1): 2432.
Zhao W., Zhao J. and Rong J. (2020) Pharmacological modulation of cardiac remodeling after myocardial infarction. Oxidative Medicine and Cellular longevity 2020: 8815349.
|