1- Askew A.J. 1974. Chance-constrained dynamic programming and the optimization of water resource systems. Water Resources Research 10(6): 1099–1106.
2- Bohle C., Maturana S., and Vera J. 2010. A robust optimization approach to wine grape harvesting scheduling. European Journal of Operational Research 200(1): 245–252.
3- Chen C., Huang G.H., Li Y.P., and Zhou Y. 2013. A robust risk analysis method of water resources allocation under uncertainty. Stochastic Environmental Research and Risk Assessment 27(3): 713–723.
4- Chung G., Lansey K., and Bayraksan G. 2009. Reliable water supply system design under uncertainty. Environmental Modelling and Software 24(4): 449–462.
5- Dai Z.Y., and Li Y.P. 2013. A multistage irrigation water allocation model for agricultural land-use planning under uncertainty. Agricultural Water Management 129: 69–79.
6- Gu W.Q., Shao D.G., and Jiang Y.F. 2012. Risk evaluation of water shortage in source area of middle route project for South-to North water transfer in China. Water Resources Management 26(12): 3479–3493.
7- Guo P., Huang G.H., He L., and Zhu H. 2009. Interval-parameter two-stage stochastic semi-infinite programming: application to water resources management under uncertainty. Water Resources Management 23(5): 1001–1023.
8- Haiyan W. 2002. Assessment and prediction of overall environmental quality of Zhuzhou City, Hunan Province, China. Journal of Environmental Management 66(3): 329-340.
9- Hashimoto T., Stedinger J.R., and Loucks D.P. 1982. Reliability, resiliency and vulnerability criteria for water resources system performance evaluation. Water Resources Research 18(1): 14–20.
10- He L., Huang G.H., and Lu H.W. 2008. A simulation-based fuzzy chance-constrained programming model for optimal groundwater remediation under uncertainty. Advances in Water Resources 31(12): 1622–1635.
11- Homayounifar M., and Rastgaripour F. 2010. Water allocation of Latian dam between agricultural products under uncertainty. Journal of Agricultural Economics and Development 24(2): 259-267. (In Persian with English abstract)
12- Huang G.H. 1996. IPWM: An Interval Parameter Water Quality Management Model. Engineering Optimization 26: 79-103.
13- Huang, G.H., Loucks, D.P., 2000. An inexact two-stage stochastic programming model for water resources management under uncertainty. Civil Engineering Systems 17(2): 95–118.
14- International Water Management Institute. 2000. World water supply and demand. International Water Management Institute, Colombo, Sri Lanka.
15- Kataoka S. 1963. A stochastic programming model. Econometrica 31(1): 181-196.
16- Li M., and Guo P. 2015. A coupled random-fuzzy two-stage programming model for crop area optimization—a case study of the middle Heihe River basin, China. Agricultural Water Management 155: 53–66.
17- Li Q. Q., Li, Y. P., Huang G. H., and Wang C.X. 2018. Risk aversion-based interval stochastic programming approach for agricultural water management under uncertainty. Stochastic Environmental Research and Risk Assessment 32(3): 715-732.
18- Li W., Wang B., Xie Y.L., Huang G.H., and Liu L. 2015. An inexact mixed risk-aversion two-stage stochastic programming model for water resources management under uncertainty. Environmental Science and Pollution Research 22(4): 2964–2975.
19- Li Y.P., Liu J., and Huang G.H. 2014. A hybrid fuzzy-stochastic programming method for water trading within an agricultural system. Agricultural Systems 123: 71–83.
20- Lu X., Li L.Y., Lei K., Wang L., Zhai Y., and Zhai M. 2010. Water quality assessment of Wei River, China using fuzzy synthetic evaluation. Environmental Earth Sciences 60(8): 1693-1699.
21- Maqsood I., and Huang G.H. 2003. A two-stage interval-stochastic programming model for waste management under uncertainty. Journal of the Air & Waste Management Association 53(5): 540–552.
22- Maqsood I., Huang G.H., and Yeomans J.S. 2005. An interval-parameter fuzzy two-stage stochastic program for water resources management under uncertainty. European Journal of Operational Research 167(1): 208-225.
23- Mardani M., Abdeshahi A., and Shirzadi Laskookalayeh S. 2020. Determining the Optimal Cropping Pattern with Emphasis on Proper Use of Sustainable Agricultural Disruptive Inputs: Application of Robust Multi-Objective Linear Fractional Programming. Journal of Agricultural Science and Sustainable Production 30(1): 241-256.
24- Mardani M., Ziaei S., and Nikouei A. 2018. Optimal cropping pattern modifications with the aim of environmental-economic decision making under uncertainty. International Journal of Agricultural Management and Development 8(3): 365-375.
25- Nafarzadegan A.R., Vagharfard H., Nikoo M.R., and Nohegar A. 2017. Application of interactive interval linear programming for optimal water and crop area allocation considering virtual water content and socio-economic factors (Case study: Dorudzan-Korbal Plain). Iranian Journal of Ecohydrology 4(2): 601-613. (In Persian with English abstract)
26- Onkal-Engin G., Demir I., and Hiz H. 2004. Assessment of urban air quality in Istanbul using fuzzy synthetic evaluation. Atmospheric Environment 38(23): 3809-3815.
27- Regulwar D.G., and Gurav J.B. 2011. Irrigation planning under uncertainty-a multi objective fuzzy linear programming approach. Water Resources Management 25(5): 1387–1416.
28- Ruan B.Q., Han Y.P., Wang H., and Jiang R.F. 2005. Fuzzy comprehensive assessment of water shortage risk. Journal of Hydraulic Engineering 36(8): 906–912.
29- Sabuhi Sabouni M., and Mardani M. 2013. Application of robust optimization approach for agricultural water resource management under uncertainty. Journal of Irrigation and Drainage Engineering 139(7): 571-581.
30- Sabuhi Sabuni M., Rastegari F., and Kahkha A. 2009. Optimal allocation of Torogh dam water between agricultural and urban sectors by an interval parameter fuzzy two stages stochastic programming under uncertainty. Economics and Agriculture Journal 3(1): 33-55. (In Persian with English abstract)
31- Safavi H.R., and Golmohammadi M.H. 2016. Evaluating the water resource systems performance using fuzzy reliability, resilience and vulnerability. Iran-Water Resources Research 12(1): 68-83. (In Persian with English abstract)
32- Singh A. 2015. Land and water management planning for increasing farm income in irrigated dry areas. Land Use Policy 42: 224–250.
33- Tabriz Regional Water Organization, Department of Equipment and Development of Agricultural Irrigation Networks. (2019). Selected Water Resources Data, Unpublished result. Tabriz, Iran.
34- Wang Y.Y., Huang G.H., Wang S., Li W., and Guan P.B. 2016. A risk-based interactive multi-stage stochastic programming approach for water resources planning under dual uncertainties. Advances in Water Resources 94: 217-230.
35- Yang L., Li A., and Bai H. 2011. Using Fuzzy Theory and Principal Component Analysis for Water Shortage Risk Assessment in Beijing, China. Energy Procedia 11: 2085-2092.
36- Zhang C., Yue Q., and Guo P. 2019. A Nonlinear Inexact Two-Stage Management Model for Agricultural Water Allocation under Uncertainty Based on the Heihe River Water Diversion Plan. International Journal of Environmental Research and Public Health 16(11): 1884.
37- Zhang N., Li Y.P., Huang W.W., and Liu J. 2014. An Inexact two-stage water quality management model for supporting sustainable development in a rural system. Journal of Environmental Informatics 24(1): 52-64.