- Amatya, D. M., Muwamba, A., Panda, S., Callahan, T., Harder, S., and Pellett, C. A. 2018. Assessment of Spatial and Temporal Variation of Potential Evapotranspiration Estimated by Four Methods for South Carolina. The Journal of South Carolina Water Resources 5 (5): 3-24. Available from https://doi.org/10.34068/jscwr.05.01
- Angstrom, A. 1924. Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation. Quarterly Journal of the Royal Meteorological Society 50 (210): 121-126. Available from https://doi.org/10.1002/qj.49705021008
- Bannayan, M., Sanjani, S., and Alizadeh, A. 2010. Association between climate indices , aridity index , and rainfed crop yield in northeast of Iran. 118: 105-114. Available from https://doi.org/10.1016/j.fcr.2010.04.011
- Battisti, R., Bender, F. D., and Sentelhas, P. C. 2019. Assessment of different gridded weather data for soybean yield simulations in Brazil. January. Available from https://doi.org/10.1007/s00704-018-2383-y
- Bender, F. D., and Sentelhas, P. C. 2018. Solar Radiation Models and Gridded Databases to Fill Gaps in Weather Series and to Project Climate Change in Brazil Solar Radiation Models and Gridded Databases to Fill Gaps in Weather Series and to Project Climate Change in Brazil. Advances in Meteorology, July, 15. Available from https://doi.org/10.1155/2018/6204382
- Bosilovich, M. G., Akella, S., Coy, L., Cullather, R., Draper, C., Gelaro, R., Kovach, R., Liu, Q., Molod, A., Norris, P., Wargan, K., Chao, W., Reichle, R., Takacs, L., Vikhliaev, Y., Bloom, S., Collow, A., Firth, S., Labow, G., …and Koster, R. D. 2015. Technical Report Series on Global Modeling and Data Assimilation, Volume 43 MERRA-2: Initial Evaluation of the Climate. Technical Report Series on Global Modeling and Data Assimilation, 43 (November).
- Bristow, K. L., and Campbell, G. S. 1984. On the relationship between incoming solar radiation and daily maximum and minimum temperature. Agricultural and Forest Meteorology 31 (2): 159-166.
- Burroughs, W. 2003. Climate into the 21st Century. Cambridge University Press.
- Castellanos-acuna, D., and Hamann, A. 2020. A cross-checked global monthly weather station database for precipitation covering the period 1901-2010. March 2019, 1-11. Available from https://doi.org/10.1002/gdj3.88
- Geng, S., Vries, F. W. T. P. de, and Supit, I. 1986. “A simple method for generating daily rainfall data.” Agricultural and Forest Meteorology 36 (4): 363-376.
- Ghazanfari Moghadam, M. S., Alizadeh, M., Mousavi, M., Farid Hoseini, A., and Bannayan, M. 2011. Comparison the PERSIANN Model with the Interpolation Method to Estimate Daily Precipitation. Journal of Water and Soil 25 (1): 207-215. Available from https://doi.org/10.22067/ifstrj.v1395i0.51210
- Joyce, R. J., Janowiak, J. E., Arkin, P. A., and Xie, P. 2004. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology 5 (3): 487–503. Available from https://doi.org/10.1175/1525-7541(2004)0052.0.CO;2
- Júnior, R. S. N., Fraisse, C., Cerbaro, V. A., Karrei, M. A. Z., and Guindin-garcia, N. 2019. Evaluation of the Hargreaves-Samani Method for Estimating Reference Evapotranspiration with Ground and Gridded Weather Data Sources. Applied Engineering in Agriculture, 35 (5): 823-835. Available from https://doi.org/10.13031/aea.13363
- Koocheki, A., Nassiri-mahallati, M., and Jafari, L. 2016. Evaluation of Climate Change Effect on Agricultural Production of Iran I . Predicting the Future Agroclimatic Conditions. May 2020.
- Lashkari, A., Bannayan, M., and Koochaki, A. and et al. 2016. Applicability of AgMERRA forcing dataset forgap-filling of in-situ meteorological observation, Case Study: Mashhad Plain. Journal of Water and Soil 29 (6): 1749-1758.
- Lopes, V. L. 1996. On the effect of uncertainty in spatial distribution of rainfall on catchment modelling. Catena, 28 (1-2): 107-119. Available from https://doi.org/10.1016/S0341-8162(96)00030-6
- Mahmood, R., Foster, S. A., and Logan, D. 2006. The GeoProfile metadata, exposure of instruments, and measurement bias in climatic record revisited. International Journal of Climatology 26 (8): 1091-1124. Available from https://doi.org/10.1002/joc.1298
- Mourtzinis, S., Edreira, J. I. R., Conley, S. P., and Grassini, P. 2016. From grid to field: Assessing quality of gridded weather data for agricultural applications. European Journal of Agronomy. Available from https://doi.org/10.1016/j.eja.2016.10.013
- Prescott, J. 1940. Evaporation from a water surface in relation to solar radiation. Trans and Proc Roy Soc South Australia, 64 (1): 114-118.
- Razavi, A. R., Nasiri Mahallati, M., Koochaki, A., and Beheshti, A. 2018. Applicability of AgMERRA for Gap-Filling of Afghanistan in-situ Temperature and Precipitation Data A. Journal of Water and Soil 32 (3): 601-616. Available from https://doi.org/10.22067/jsw.v32i3.68501
- Richardson, C. W., and Wright, D. A. 1984. WGEN: A Model for- Generating Daily Weather Variables. , Vol. ARS-8, U. S. Department of Agriculture, Agricultural Research Service, Washington, DC, USA.
- Rienecker, M. M., Suarez, M. J., and Gelaro, R. 2011. MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. Journal of Climate 24 (14): 3624-3648.
- Ruane, A. C., Goldberg, R., and Chryssanthacopoulos, J. 2015. Climate forcing datasets for agricultural modeling: merged products for gap-filling and historical climate series estimation. Agricultural and Forest Meteorology 200: 233-248.
- van Wart, J., Grassini, P., and Cassman, K. G. 2013. Impact of derived global weather data on simulated crop yields. Global Change Biology 19 (12): 3822-3834.
- Van Wart, J., Grassini, P., Yang, H., Claessens, L., Jarvis, A., and Cassman, K. G. 2015. Creating long-term weather data from thin air for crop simulation modeling. Agricultural and Forest Meteorology 209-210, 49-58. Available from https://doi.org/10.1016/j.agrformet.2015.02.020
- Wallach D., Makowski D., and J. J. W. 2006. Working with dynamic crop models.1st Edidion (D. W. D. M. J. Jones (ed.)).
- White, J. W., Hoogenboom, G., Stackhouse, P. W., and Hoell, J. M. 2008. Evaluation of NASA satellite- and assimilation model-derived long-term daily temperature data over the continental US. 148: 1574-1584. Available from https://doi.org/10.1016/j.agrformet.2008.05.017
- Willmott, C. J., Ackleson, S. G., Davis, R. E., Feddema, J. J., Klink, K. M., Legates, D. R., O’Donnell, J., and Rowe, C. M. 1985. Statistics for the evaluation and comparison of models. Journal of Geophysical Research 90 (C5): 8995. Available from https://doi.org/10.1029/jc090ic05p08995
- Xavier, A. C., King, C. W., and Scanlon, B. R. 2015. Daily gridded meteorological variables in Brazil (1980-2013). International Journal of Climatology 36 (6): 2644-2659.
- Yaghoobi, F., Bannayan, M., and Asadi, G. 2018. Evaluation of Grided AgMERRA Weather Data for Simulation of Water Requirement and Yield of Rainfed Wheat in Khorasan Razavi Province F. 32 (2): 415-431. Available from https://doi.org/10.22067/jsw.v32i2.68948
- Yaghoubi, F., Bannayan, M., and Asadi, G. A. 2020. Performance of predicted evapotranspiration and yield of rainfed wheat in the northeast Iran using gridded AgMERRA weather data. International Journal of Biometeorology. Available from https://doi.org/10.1007/s00484-020-01931-y
|