تعداد نشریات | 50 |
تعداد شمارهها | 1,874 |
تعداد مقالات | 19,720 |
تعداد مشاهده مقاله | 12,094,851 |
تعداد دریافت فایل اصل مقاله | 7,648,140 |
ژئوشیمی، خاستگاه و دمایی آناتکسی تشکیل مونزوگرانیت خلج (مشهد، ایران) | ||
زمین شناسی اقتصادی | ||
دوره 13، شماره 1 - شماره پیاپی 28، 1400، صفحه 145-164 اصل مقاله (6.26 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22067/econg.v13i1.84933 | ||
نویسندگان | ||
رامین صمدی1؛ قدرت ترابی* 1؛ حسن میرنژاد2 | ||
1گروه زمینشناسی، دانشکده علوم، دانشگاه اصفهان، اصفهان، ایران | ||
2گروه زمینشناسی، دانشکده علوم، دانشگاه تهران، تهران، ایران | ||
چکیده | ||
سنگهای مونزوگرانیتی گروهی از گرانیتوئیدهای مشهد با سن مزوزوئیک هستند که در منطقه خلج (واقع در جنوب شهر مشهد) رخنمون دارند. این سنگها دارای کانیهای کوارتز، پتاسیم فلدسپار، پلاژیوکلاز، میکا و کانی های فرعی زیرکن و آپاتیت هستند. از دیدگاه ژئوشیمیایی، در مونزوگرانیت خلج میزان کم HREE و میزان بالای LREE و LILE نشاندهنده درجات بالای تفریق مذاب مولد آن است. بنابراین، مونزوگرانیت خلج از گروه گرانیتوئیدهای فروئن، آلکالی کلسیک، پرآلومین، فلسیک نوع S و محصول ذوببخشی رسوبات پوسته بالایی در دمای نزدیک به 730 تا 800 درجه سانتیگراد است. دماهای اشباعشدگی ماگما از زیرکنیم هنگام تشکیل زیرکن کمتر از 800 (تقریباً 732 تا 745) درجه سانتیگراد محاسبهشد. با فرورانش پالئوتتیس زیر ورقه توران و برخورد قارهای، پوسته بالایی در اثر فرایندهای زمینساختی فشاری دچار ذوببخشی شده و تودههای نفوذی مونزوگرانیتی همزمان با برخورد تا پسابرخوردی نوع S خلج تشکیل شدهاند. | ||
کلیدواژهها | ||
سنگ نگاری؛ ژئوشیمی؛ مونزوگرانیت؛ مزوزوئیک؛ خلج؛ مشهد | ||
مراجع | ||
Alderton, D.H.M., Pearce, J.A. and Potts, J., 1980. Rare earth element mobility during granite alteration: Evidence from southwest England. Earth and planetary Science Letters, 49(1): 149–165. https://doi.org/10.1016/0012-821X(80)90157-0 Almeida, M.E., Macambira, M.J.B. and Oliveira, E.C., 2007. Geochemistry and zircon geochronology of the I-type high-K calc-alkaline and S-type granitoid rocks from southeastern Roraima, Brazil: Orosirian collisional magmatism evidence (1.97-1.96 Ga) in central portion of Guyana Shield. Precambrian Research, 155(1–2): 69–97. https://doi.org/10.1016/j.precamres.2007.01.004 Barbarin, B., 1999. A review of the relationships between granitoid types, their origin and their geodynamic environments. Lithos, 46(3): 605–626. https://doi.org/10.1016/S0024-4937(98)00085-1 Batchelor, R.A. and Bowden, P., 1985. Petrogenetic interpretation of granitoid rocks series using multicationic parameters. Chemical Geology, 48(1–4): 43–55. https://doi.org/10.1016/0009-2541(85)90034-8 Chappell, B.W., Bryant, C.J. and Wyborn, D., 2012. Peraluminous I-type granites. Lithos, 153: 142–153. https://doi.org/10.1016/j.lithos.2012.07.008 Chappell, B.W., Bryant, C.J., Wyborn, D., White, A.J.R. and Williams, I.S., 1998. High- and low-temperature I-type granites. Resource Geology, 48(4): 225–236. https://doi.org/10.1111/j.1751-3928.1998.tb00020.x Chappell, B.W. and White, A.J.R. 2001. Two contrasting granite types: 25 years later. Australian Journal of Earth Sciences, 48: 489–499. https://doi.org/10.1046/j.1440-0952.2001.00882.x Chappell, B.W. and White, A.J.R., 1984. I- and S-type granites in the Lachlan fold belt, southeastern Australia. In: X. Keqin and T. Guangchi (Editors), Geology of granites and their metallogenic relations, Science Press, Beijing, pp. 87–101. Retrieved July 11, 2019 from http;//www.jstor.org/stable/37315 Chappell, B.W. and White, A.J.R., 1992. I- and S-type granites in the Lachlan fold belt. Earth and Envioronmental Sciennce Transactions of The Royal Society Edinburgh, 83(1–2): 1–26. https://doi.org/10.1017/S0263593300007720 Clarke, D.B., 1992. Granitoid rocks. Chapman and Hall, London, 283 pp. Clemens, J.D. and Stevens, G., 2012. What controls chemical variation in granitic magmas? Lithos, 134–135: 317–329. https://doi.org/10.1016/j.lithos.2012.01.001 Cox, K.G., Bell, J.S. and Pankhurst, R.J., 1979. The interpretation of igneous rocks. Allen and Unwin, London, 450 pp. https://doi.org/10.1007/978-94-017-3373-1 El-Kammar, A.M., Salman, A.E., Shalaby, M.H. and Mahdy, A.I., 2001. Geochemical and genetical constraints on rare metals mineralization at the central Eastern Desert of Egypt, Geochemical Journal, 35(2): 117–135. https://doi.org/10.2343/geochemj.35.117 Frost, B.R., Barnes, C.G., Collins, W.J., Arculus, S.R.J., Ellis, D.J. and Frost, C.D., 2001. A geochemical classification for granitic rocks. Journal of Petrology, 42(11): 2033–2048. https://doi.org/10.1093/petrology/42.11.2033 Gill, R., 2010. Igneous rocks and processes. Wiley-Blackwell, Hoboken, USA 428 pp. Retrieved July 11, 2019 from https://www.wiley.com/en-gb/Igneous+Rocks+and+Processes%3A+A+Practical+Guide-p-9781444362435 Henderson, P. 1984. Rare earth element geochemistry. Elsevier, New York, USA, 510 pp. Retrieved July 11, 2019 from https://www.elsevier.com/books/rare-earth-element-geochemistry/henderson/978-0-444-42148-7 Hughes, C.J., 1973. Spilites, keratophyres, and the igneous spectrum. Geological Magazine, 109(6): 513–527. https://doi.org/10.1017/S0016756800042795 Jazi, M.A., Karimpour, M.H. and Malekzadeh Shafaroudi, A., 2012. Overview of the geochemistry and Rb/Sr, Sm/Nd isotopes of Middle Jurassic and Tertiary granitoid intrusions: a new insight on tectono-magmatism and mineralization of this period in Iran. Journal of Economic Geology, 4(2): 171–198. (in Persian with English abstract) https://doi.org/10.22067/econg.v4i2.16489 Jung, S. and Pfänder, J.A., 2007. Source composition and melting temperatures of orogenic granitoids: constraints from CaO/Na2O, Al2O3/TiO2 and accessory mineral saturation thermometry. European Journal of Mineralogy, 19(6): 859–870. https://doi.org/10.1127/0935-1221/2007/0019-1774 Karimpour, M.H., Malekzadeh Shafaroudi, A. and Saadat, S., 2014. Mineralogy, geochemistry, genesis, and industrial application of silica in Arefi area, south of Mashhad. Journal of Economic Geology, 6(2): 259–276. (in Persian with English abstract) https://doi.org/10.22067/econg.v6i2.34264 Karimpour, M.H., Stern, C.R. and Farmer, L., 2010. Zircon U-Pb geochronology, Sr-Nd isotope analyses, and petrogenetic study of the Dehnow quartz diorite and Kuhsangi granodiorite (Paleo-Tethys), NE Iran. Journal of Asian Earth Sciences, 37(4): 384–393. https://doi.org/10.1016/j.jseaes.2009.11.001 Karsli, O., Dokuz, A., Uysal, I., Aydin, F., Kandemir, R. and Wijbrans, R.J., 2010. Generation of the Early Cenozoic adakitic volcanism by partial melting of mafic lower crust, Eastern Turkey: Implications for crustal thickening to delamination. Lithos, 114(1–2): 109–120. https://doi.org/10.1016/j.lithos.2009.08.003 Koepke, J., Berndt, J., Feig, S.T. and Holtz, F., 2007. The formation of SiO2-rich melts within the deep oceanic crust by hydrous partial melting of gabbros. Contributions to Mineralogy and Petrology, 153(1): 67–84. https://doi.org/10.1007/s00410-006-0135-y Le Maitre, R.W. 1976, The chemical variability of some common igneous rocks. Journal of Petrology, 17(4): 589–637. https://doi.org/10.1093/petrology/17.4.589 Maniar, P.D. and Piccoli, P.M., 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635–643. https://doi.org/10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2 McDonough, W.F. and Sun, S.S., 1995. Composition of the Earth. Chemical Geology, 120(3–4): 223–253. https://doi.org/10.1016/0009-2541(94)00140-4 Miller, C.F., McDowell, S.M. and Mapes, R.W., 2003. Hot and cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31(6): 529–532. https://doi.org/10.1130/0091-7613(2003)031<0529:HACGIO>2.0.CO;2 Mirnejad, H., Lalonde, A.E., Obeid, M. and Hassanzadeh, J., 2013. Geochemistry and petrogenesis of Mashhad granitoids: An insight into the geodynamic history of the Paleo-Tethys in northeast of Iran. Lithos, 170–171: 105–116. https://doi.org/10.1016/j.lithos.2013.03.003 Natalin, B.A. and Sengör, A.M.C., 2005. Late Paleozoic to Triassic evolution of the Turan and Scythian platforms: The pre-history of the Palaeo-Tethyan closure. Tectonophysics, 404(3–4): 175–202. https://doi.org/10.1016/j.tecto.2005.04.011 Patiño Douce, A.E., 1999. What do experiments tell us about the relative contributions of crust and mantle to the origins of granitic magmas? Geological Society, London, Special Publication, 168: 55–75. https://doi.org/10.1144/GSL.SP.1999.168.01.05 Pearce, J.A., Harris, N.B.W. and Tindle, A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25: 956–983. https://doi.org/10.1093/petrology/25.4.956 Peccerillo, A. and Taylor, S.R., 1976. Geochemistry of Eocene calcalkaline volcanic rocks from Kastamonu area, northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63–81. https://doi.org/10.1007/BF00384745 Pitcher, W.A.S., 1993. The nature and origin of granite. Chapman and Hall, London, 321 pp. https://doi.org/10.1007/978-94-011-5832-9 Rapp, R.P. and Watson, E.B., 1995. Dehydration melting of metabasalt at 8–32 kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4): 891–931. https://doi.org/10.1093/petrology/36.4.891 Rollinson, H., 1993. Using Geochemical Data: evaluation, presentation, interpretation, Longman Group UK Ltd., London, United Kingdom, 352 pp. Sahin, S.Y., Güngör, Y. and Boztuğ, D., 2004. Comparative petrogenetic investigation of Composite Kaçkar Batholith granitoids in Eastern Pontide magmatic arc-Northern Turkey. Earth, Planet and Space, 56(4): 429–446. https://doi.org/10.1186/BF03352496 Samadi, R., 2013. Chemistry and origin of garnet in the granitoids and metamorphic rocks in the south of Mashhad (Khajeh-Morad, Khalaj and Dehnow). Ph.D. Thesis, Science and Research Branch, Islamic Azad University, Tehran, Iran, 398 pp. (in Persian with English Abstract) Retrieved July 11, 2019 from https://ganj.irandoc.ac.ir/#/articles/8da0469754e7f65b5428493a1ed92e2c Samadi, R., Mirnejad, H., Kawabata, H., Valizadeh, M.V., Harris, C. and Gazel, E., 2014. Magmatic garnet in the Triassic (215 Ma) Dehnow pluton of NE Iran and its petrogenetic significance. International Geology Review, 56(5): 596–621. https://doi.org/10.1080/00206814.2014.880659 Samadi, R., Shirdashtzadeh, N. and Kawabata, H., 2015. Petrography and petrogenesis of aplite-pegmatite dykes and granitoids of Khajeh Morad (SE Mashhad, Iran). Scientific Quaterly Journal, Geosciences, 25(97): 49–60. (in Persian with English abstract) http://dx.doi.org/10.22071/gsj.2015.41351 Shikazono, N., 2003. Geochemical and Tectonic Evolution of Arc-Backarc Hydrothermal Systems: Implication for the Origin of Kuroko and Epithermal Vein-Type Mineralizations and the Global Geochemical Cycle. Elsevior, Amestrdam, 463 pp. Retrieved July 11, 2019 from https://www.sciencedirect.com/bookseries/developments-in-geochemistry/vol/8/suppl/C Soltani, A., 2000. Geochemistry and geochronology of I type granitoid rocks in the northeastern Central Iran. Ph.D. Thesis, University of Wollongong, Wollongong, Australia, 300 pp. Retrieved July 11, 2019 from https://ro.uow.edu.au/cgi/viewcontent.cgi?article=2970&context=theses Streckeisen, A.L. and Le Maitre, R.W., 1979. Chemical approximation to the modal QAPF classification of the igneous rocks. Neues Jahrbuch für Mineralogie, Abhandlungen, 136: 169–206. Retrieved July 11, 2019 from http://diposit.ub.edu/dspace/bitstream/2445/172864/1/704879.pdf
Sylvester, J., 1998. Post-collisional strongly peraluminous granites. Lithos, 45(1–4): 29–44. https://doi.org/10.1016/S0024-4937(98)00024-3 Taheri, J. and Ghaemi, F., 1994. Geological sheet map of Mashhad, 1:100000 scale. Geological Survey and Mineral Exploration of Iran, Tehran. Taylor, S.R. and McLennan, S.M., 1981. The composition and evolution of the continental crust: Rare earth element evidence from sedimentary rocks. Philosophical Transactions of the Royal Society of London, A301: 381–399. https://doi.org/10.1098/rsta.1981.0119 Taylor, S.R. and McLennan, S.M., 1985. The continental crust: Its composition and evolution. Blackwell, Oxford, 312 pp. Retrieved July 11, 2019 from https://onlinelibrary.wiley.com/doi/pdf/10.1002/gj.3350210116 Villaseca, C., Barbero, L. and Herreros, V., 1998. A re-examination of the typology of peraluminous granite types in intracontinental orogenic belts. Earth and Envioronmental Sciennce Transactions of The Royal Society Edinburgh, 89(2): 113–119. https://doi.org/10.1017/S0263593300007045 Villaseca, C., Bellido, F., Pérez-Soba, C. and Billström, K., 2009. Multiple crustal sources for post-tectonic I-type granites in the Hercynian Iberian Belt. Mineralogy and Petrology, 96(3): 197–211. https://doi.org/10.1007/s00710-009-0057-2 Watson, E.B. and Capobianco, C.J., 1981. Phosphorus and rare earth elements in felsic magmas: An assessment of the role of apatite. Geochimica et Cosmochimica Acta, 45(12): 2349–2358. https://doi.org/10.1016/0016-7037(81)90088-0 Watson, E.B. and Harrison, T.M., 1983. Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64(2): 295–304. https://doi.org/10.1016/0012-821X(83)90211-X Whitney, D.L. and Evans, B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185–187. https://doi.org/10.2138/am.2010.3371 Zanchi, A., Berra, F., Balini, M., Ghassemi, M.R., Heidarzadeh, G. and Zanchetta, S., 2011. The Palaeotethys suture zone in NE Iran: New constraints on the evolution of the Eo-Cimmerian belt (Darius Programme). Proceeding of AAPG International Conference and Exhibition, Milano Convention Centre, Milan, Italy. Retrieved July 11, 2019 from http://www.searchanddiscovery.com/documents/2012/30222zanchi/ndx_zanchi.pdf | ||
آمار تعداد مشاهده مقاله: 706 تعداد دریافت فایل اصل مقاله: 474 |