- Ajith, K., Geethalakshmi, V., Ragunath, K., Pazhanivelan, S., & Panneerselvam, S. (2017). Rice Acreage Estimation in Thanjavur, Tamil Nadu Using Lands at 8 OLIIMAGES and GIS Techniques. International Journal of Current Microbiology and Applied Sciences, 6, 2327-2335. https://doi.org/10.20546/ijcmas.2017.607.275
- Alipour, F., Aghkhani, M., Abasspour-Fard, M., & Sepehr, A. (2014). Demarcation and estimation of agricultural lands using etm+ imagery data (case study: Astan ghods razavi great farm). Journal of Agricultural Machinery, 4, 244-254. (in Persian with English abstract). https://doi.org/10.22067/JAM.V4I2.34827
- Ansari Amoli, A., & Alimohammadi Sarab, A. (2011). Rice area estimation by using multi-temporal classification method and AVHRR data. Spatial Planning (Modares Human Sciences), 15, 1-16. (in Persian).
- Atzberger, C. 2013. Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote Sensing, 5, 949-981. https://doi.org/10.3390/rs5020949
- Bagan, H., & Yamagata, Y. 2012. Landsat analysis of urban growth: How Tokyo became the world's largest megacity during the last 40 years. Remote Sensing of Environment, 127, 210-222. https://doi.org/10.1016/j.rse.2012.09.011
- Chauhan, S., Darvishzadeh, R., Boschetti, M., Pepe, M., & Nelson, A. (2019). Remote sensing-based crop lodging assessment: Current status and perspectives. ISPRS Journal of Photogrammetry and Remote Sensing, 151, 124-140. https://doi.org/10.1016/j.isprsjprs.2019.03.005
- Darvishzadeh, R., Matkan, A. A., & Eskandari, N. (2011). Evaluation of ALOS-AVNIR2 spectral indices for prediction of rice biomass. Journal of Geographical Landscape, 6, 11-14. (in Persian).
- Dashti Marvili, M., Kamkar, B., & Kazemi, H. (2019). Detection of rice and soybean grown fields and their related cultivation area using Sentinel-2 satellite images in summer cropping patterns to analyze temporal changes in their cultivation area (Case study: four watershed basins of Golestan Province). Journal of Water and Soil Conservation (Journal of Agricultural Sciences and Natural Resources), 26, 151-167. (in Persian).
- FAO. 2019. Food and agriculture organization of the United Nations. FAOSTAT: Crops. http://www.fao.org/faostat/en/#data/QC.
- Godarzi Mehr, S., Abbaspour, R. A., Ahadnezhad, V., & Khakbaz, B. (2012). Comparison of support vector machine, neural network, and maximum likelihood methods for the separation of lithological units. Iranian Journal of Geology, 6, 75-92. (in Persian).
- Hopkins, P. F., Maclean, A., & Lillesand, T. (1988). Assessment of Thematic Mapper imagery for forestry applications under Lake States conditions. Photogrammetric Engineering and Remote sensing (USA).
- Izaddoost, H., Samizadeh, H., Rabiei, B., & Abdollahi, S. (2013). Evaluation of salt tolerance in rice (Oryza sativa) cultivars and lines with emphasis on stress tolerance indices. Cereal Research, 3, 167-180. (in Persian). https://doi.org/20.1001.1.22520163.1392.3.3.1.2
- Kazemi Posht Mousavi, H., Pirdashti, H. A., Bahmanyar, M. A., & Nasiri, M. (2007). Study the effects of nitrogen fertilizer rates and split application on yield and yield components of different rice (Oryza sativa) cultivars. Pajouhesh-va-Sazandegi, 20, 68-77. (in Persian).
- Khatami, R., Mountrakis, G., & Stehman, S. V. (2016). A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future Remote Sensing of Environment, 177, 89-100. https://doi.org/10.1016/j.rse.2016.02.028
- Li, C., Wang, J., Wang, L., Hu, L., & Gong, P. (2014). Comparison of classification algorithms and training sample sizes in urban land classification with Landsat thematic mapper imagery. Remote Sensing, 6, 964-983. https://doi.org/10.3390/rs6020964
- Mather, P., & Tso, B. (2016). Classification methods for remotely sensed data. CRC press. https://doi.org/10.1201/9781420090741
- Mondal, S., Jeganathan, C., Sinha, N. K., Rajan, H., Roy, T., & Kumar, P. (2014). Extracting seasonal cropping patterns using multi-temporal vegetation indices from IRS LISS-III data in Muzaffarpur District of Bihar, India. The Egyptian Journal of Remote Sensing and Space Science, 17, 123-134. https://doi.org/10.1016/j.ejrs.2014.09.002
- Naghinezhad, A. R., Saeidi Mehrvarz, S., Norouzi, M., & Faridi, M. (2006). Contribution to the vascular and bryophyte flora as well as habitat diversity of the boujagh national park, n. Iran. Rostaniha, 7, 83-105. (in Persian).
- Nuarsa, I., Nishio, F., & Hongo, C. (2010). Development of the empirical model for rice field distribution mapping using multi-temporal Landsat ETM+ data: case study in Bali Indonesia. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, XXXVIII, part 8.
- Paul, G. C., Saha, S., & Hembram, T. K. (2020). Application of phenology-based algorithm and linear regression model for estimating rice cultivated areas and yield using remote sensing data in Bansloi River Basin, Eastern India. Remote Sensing Applications: Society and Environment, 19, 100367. https://doi.org/10.1016/j.rsase.2020.100367
- Prasad, A., Singh, R., Tare, V., & Kafatos, M. (2007). Use of vegetation index and meteorological parameters for the prediction of crop yield in India. International Journal of Remote Sensing, 28, 5207-5235. https://doi.org/10.1080/01431160601105843
- Richards, J. A., & Richards, J. (1999). Remote sensing digital image analysis. Springer.
- Sakamoto, T., Sprague, D. S., Okamoto, K., & Ishitsuka, N. (2018). Semi-automatic classification method for mapping the rice-planted areas of Japan using multi-temporal Landsat images. Remote Sensing Applications: Society and Environment, 10, 7-17. https://doi.org/10.1016/j.rsase.2018.02.001
- Shen, S., Yang, S., Li, B., Tan, B., Li, Z., & Le Toan, T. (2009). A scheme for regional rice yield estimation using ENVISAT ASAR data. Science in China Series D: Earth Sciences, 52, 1183-1194. https://doi.org/10.1007/s11430-009-0094-z
- Singha, M., Dong, J., Zhang, G., & Xiao, X. (2019). High resolution paddy rice maps in cloud-prone Bangladesh and Northeast India using Sentinel-1 data. Scientific data, 6, 1-10. https://doi.org/10.1038/s41597-019-0036-3
- Torbick, N., Chowdhury, D., Salas, W., & Qi, J. (2017). Monitoring rice agriculture across Myanmar using time series Sentinel-1 assisted by Landsat-8 and PALSAR-2. Remote Sensing, 9, 119. https://doi.org/10.3390/rs9020119
- USGS. (2021). United States Geological Survey. USGS Earth Explorer. https://earthexplorer.usgs.gov/.
- Weiss, M., Jacob, F., & Duveiller, G. (2020). Remote sensing for agricultural applications: A meta-review. Remote Sensing of Environment, 236, 111402. https://doi.org/10.1016/j.rse.2019.111402
- Yaghouti, H., Pazira, E., Amiri, E., & Masihabadi, M. H. (2018). Application of satellite imagery and remote sensing technology to estimate rice yield. Journal of Soil and Water Resources Conservation, 7, 55-68. (in Persian).
- Yang, C., Everitt, J. H., & Murden, D. (2011). Evaluating high resolution SPOT 5 satellite imagery for crop identification. Computers and Electronics in Agriculture, 75, 347-354. https://doi.org/10.1016/j.compag.2010.12.012
- Younesi, B., Ahmadi Sani, N., & Sharafi, S. (2019). Evaluation of IRS-P6 Images for Orchards Area Estimating. Remote Sensing & GIS, 11, 115-128. (in Persian). https://doi.org/10.52547/gisj.11.1.113
- Ziaeian Firouzabadi, P., Sayad Bidhendi, L., & Eskandari Noudeh, M. (2009). Mapping and acreage estimating of rice agricultural land using radarsat a satellite images. Physical Geography Research Quarterly, 41, 45-58. (in Persian).
|