- Abdel Ghany, A. M., & Helal, I. M. (2011). Solar energy utilization by a greenhouse: general relations. Renewable Energy, 36, 189-196. https://doi.org/10.1016/j.renene.2010.06.020.
- Abu-Hamdeh, N. H., & Reeder, R. C. (2000). Soil thermal conductivity effects of density, moisture, salt concentration, and organic matter. Soil Science Society of America Journal, 64(4), 1285-1290. https://doi.org/10.2136/sssaj2000.6441285x.
- Ahamed, S., Guo, H., & Tanino, K. 2019. Energy saving techniques for reducing the heating cost of conventional greenhouses. Biosystems Engineering, 178, 9-33. https://doi.org/10.1016/j.biosystemseng.2018.10.017.
- Bergman, T. L., Incropera, F. P., Lavine, A. S., & Dewitt, D. P. (2011). Introduction to heat transfer. John Wiley & Sons. Amsterdam.
- Bolandnazar, E., Sadrnia, H., Rohani, A., & Taki, M. (2019). Prediction of Temperature in a Greenhouse Covered with Polyethylene Plastic Using Artificial Neural Networks, Case Study: Jiroft Region. Iranian Journal of Biosystem Engineering, 51(1), 125-137. https://doi.org/10.22059/ijbse.2019.291077.665235.
- Dayioğlu, M. A., & Silleli, H. H. (2015). Performance analysis of a greenhouse fan-pad cooling system: gradients of horizontal temperature and relative humidity. Journal of Agricultural Science, 21, 132-143. https://doi.org/10.15832/TBD.25721.
- Fidaros, D. K., Baxevanou, C. A., Bartzanas, T., & Kittas, C. (2010). Numerical simulation of thermal behavior of a ventilated arc greenhouse during a solar day. Renewable Energy, 35, 1380-1386. https://doi.org/10.1016/j.renene.2009.11.013.
- Ghani, S., Bakochristou, F., ElBialy, E. M., Gamaledin, A. A., Rashwan, S. M. A., Abdelhalim, M. M., & Ismail, S. M. 2019. Design challenges of agricultural greenhouses in hot and arid environments– A review. Engineering in Agriculture, Environment and Food, 12, 48-70. https://doi.org/10.1016/j.eaef.2018.09.004.
- Ghasemi Mobtaker, H., Ajabshirchi, Y., Ranjbar, S. F., & Matloobi, M. (2019). Simulation of thermal performance of solar greenhouse in north-west of Iran: An experimental validation. Renewable Energy, 135, 88-97. https://doi.org/10.1016/j.renene.2018.10.003.
- Hamdani, M., Taki, M., Rahnama, M., Rohani, A., & Rahmati-joneidabad, M. (2020). Prediction the inside Variables of Even-span Glass Greenhouse with Special Structure by Artificial Neural Network (MLP-RBF) Models. Journal of Agricultural Machinery, 10(2), 213-227. (in Persian with English abstract). https://doi.org/10.22067/jam.v10i2.72346
- Holman, J. P. (2010). Heat Transfer. Eighth ed. McGraw-Hill Science, New York.
- Jiao, W., Qi, L., Lijun, G., Kunyu, L., Shi, R., & Ta, N. (2020). Computational Fluid Dynamics-Based Simulation of Crop CanopyTemperature and Humidity in Double-Film Solar Greenhouse. Journal of Sensors, 1-15. https://doi.org/10.1155/2020/8874468.
- Joudi, K., & Farhan, A. (2015). A dynamic model and an experimental study for the internal air and soil temperatures in an innovative greenhouse. Energy Conversion and Management, 91, 76-82. https://doi.org/10.1016/j.enconman.2014.11.052.
- Moghaddam, J. J., Ozlati, S., Zarei, Gh., Momeni, D., & Azadshahraki, F. (2021). Ventilation and Cooling Modeling and Lyout of Fans, Pads and Vents of an Octagonal Greenhouse. Journal of Agricultural Machinery, 11(2), 247-262. (in Persian with English abstract). https://doi.org/10.22067/jam.v11i2.82130.
- Munar, E., & Aldana, C. (2019). CFD Simulation of the Increase of the Roof Ventilation Area in a Traditional Colombian Greenhouse: Effect on Air Flow Patterns and Thermal Behavior. International Journal of Heat and Technology, 7(3), 881-892. http://doi.org/10.18280/ijht.370326
- Nadi, F., Abdanan Mehdizadeh, S., & Nourani Zonouz, O. (2016). Comparing between predicted output temperature of flat-plate solar collector and experimental results: computational fluid dynamics and artificial neural network. Journal of Agricultural Machinery, 7(1), 298-311. (in Persian with English abstract). https://doi.org/10.22067/jam.v7i1.59698.
- Pakari, A., & Ghani, S. (2019). Evaluation of a novel greenhouse design for reduced cooling loads during the hot season in subtropical regions. Solar Energy, 181, 234-242. https://doi.org/10.1016/j.solener.2019.02.006.
- Roy, J. C., Boulard, T., Kittas, C., & Wang, S. 2002. Convective and ventilation transfers in greenhouses, Part 1: the greenhouse considered as a perfectly stirred tank. Biosystems Engineering, 83, 1-20. https://doi.org/10.1006/bioe.2002.0107.
- Saberian, A., & Sajadiye, S. M. (2019). The effect of dynamic solar heat load on the greenhouse microclimate using CFD simulation. Renewable Energy, 138, 722-737. https://doi.org/10.1016/j.renene.2019.01.108.
- Santolini, E., Pulvirenti, B., Benni, S., Barbaresi, L., Torreggiani, D., & Tassinari, P. (2018). Numerical study of wind-driven natural ventilation in a greenhouse with screens. Computers and Electronics in Agriculture, 149, 41-53. https://doi.org/10.1016/j.compag.2017.09.027.
- Taki, M., Ajabshirchi, Y., Ranjbar, S. F., Rohani, A., & Matloobi, M. (2016a). Heat transfer and MLP neural network models to predict inside environment variables and energy lost in a semi-solar greenhouse. Energy and Buildings, 110, 314-29. https://doi.org/10.1016/j.enbuild.2015.11.010.
- Taki, M., Ajabshirchi, Y., Ranjbar, S. F., Rohani, A., & Matloobi, M. (2016b). Modeling and experimental validation of heat transfer and energy consumption in an innovative greenhouse structure. Information Processing in Agriculture, 3, 157-174. https://doi.org/10.1016/j.inpa.2016.06.002.
- Taki, M., Rohani, A., & Rahmati-Joneidabad, M. (2018). Solar thermal simulation and applications in greenhouse. Information Processing in Agriculture, 5, 83-113. https://doi.org/10.1016/j.inpa.2017.10.003.
- Wang, J., Li, S., Guo, S., Ma, C., Wang, J., & Sun, J. (2017). Analysis of heat transfer properties of hollow block wall filled by different materials in solar greenhouse. Engineering in Agriculture, Environment and Food, 10, 31-38. https://doi.org/10.1016/j.eaef.2016.07.003.
- Zhang, X., You, S., Tian, Y., & Li, J. (2019). Comparison of plastic film, biodegradable paper and bio-based film mulching for summer tomato production: Soil properties, plant growth, fruit yield and fruit quality. Sciatica Horticulture, 249, 38-48. https://doi.org/10.1016/j.scienta.2019.01.037.
|