1. Abderrahmani, S., Maalam, T. and Hamadi, D. On improved thin plate bending rectangular finite element based on the strain approach, Interna tional Journal of Engineering Research in Africa(27) 76–86, Trans Tech Publications, 2016.
2. Abderrahmani, S., Maalem, T., Zatar, A. and Hamadi, D. A new strain based sector finite element for plate bending problems, International Jour- nal of Engineering Research in Africa (31) 1–13, Trans Tech Publications, 2017.
3. Alsafadie, R., Hjiaj, M. and Battini, J.M. Three-dimensional formulation of a mixed corotational thin-walled beam element incorporating shear and warping deformation, Thin-Walled Struct. 49(4) (2011), 523–533.
4. Andelfinger U. and Ramm E. EAS-elements for two-dimensional, three dimensional, plate and shell structures and their equivalence to HRelements, Int. J. Num. Meth. Eng. 36(8) (1993), 1311–1337.
5. Ansari, S.U., Hussain, M., Mazhar, S., Manzoor, T., Siddiqui, K.J., Abid, M. and Jamal, H. Mesh partitioning and efficient equation solving techniques by distributed finite element methods: A survey, Arch. Comput. Methods Eng. 26(1) (2019), 1–16.
6. Arregui-Mena, J.D., Worth, R.N., Hall, G., Edmondson, P.D., Giorla, A.B. and Burchell, T.D. A review of finite element method models for nuclear graphite applications, Arch. Comput. Methods Eng. 27(1) (2020), 331–350.
7. Ashwell, D.G. and Sabir, A.B. A new cylindrical shell finite element based on simple independent strain functions, Int. J. Mech. Sci. 14(3) (1972), 171–183.
8. Awrejcewicz, J., Krysko, A.V., Zhigalov, M.V. and Krysko, V.A. Size Dependent Theories of Beams, Plates and Shells, Mathematical Modelling and Numerical Analysis of Size-Dependent Structural Members in Temperature Fields 142 (2021) 25–78. Springer, Cham.
9. Belarbi, M.T. and Bourezane, M., On improved Sabir triangular element with drilling rotation, Rev. eur. génie civ., 9(9-10) (2005), 1151–1175.
10. Belarbi, M.T. and Bourezane, M. An assumed strain based on triangular element with drilling rotation, Courier de Savoir, 6 (2005), 117–123.
11. Belarbi, M.T. and Charif, A. Nouvel élément secteur basé sur le modèle dedéformation avec rotation dans le plan.Revue Européenne des Éléments Finis, 7(4) (1998), 439–458 (In French).
12. Belarbi, M.T. and Maalem, T. On improved rectangular finite element forplane linear elasticity analysis, Revue Européenne des Éléments Finis, 14(8) (2005), 985–997.
13. Belarbi, M.O., Zenkour, A.M., Tati, A., Salami, S.J., Khechai, A. and Houari, M.S.A. An efficient eight-ffffnode quadrilateral element for free vibration analysis of multilayer sandwich plates, Int. J. Num. Meth. Eng. 122(9) (2021), 2360–2387.
14. Belounar, A., Benmebarek, S. and Belounar, L. Strain based triangular finite element for plate bending analysis, Mech. Adv. Mater. Struct. 27 (8) (2018), 1–13.
15. Belounar, L. and Guenfoud, M. A new rectangular finite element based on the strain approach for plate bending, Thin-Walled Struct., 43(1) (2005), 47–63.
16. Belounar, L. and Guerraiche, K. A new strain-based brick element for plate bending, Alex. Eng. J. 53(1) (2014), 95–105.
17. Belytschko, T. and Bindeman, L.P. Assumed strain stabilization of the eight node hexahedral element, Comput. Methods Appl. Mech. Eng. 105(2) (1993), 225–260.
18. Bergan, P.G. and Felippa, C. A triangular membrane element with rotational degrees of freedom, Comput. Methods Appl. Mech. Eng. 50(1)(1985), 25–69.
19. Bergan, P.G. and Nygard, M.K. ◦ Finite elements with increased freedom in choosing shape functions, Int. J. Num. Meth. Eng. 20(4) (1984), 643–663.
20. Boutagouga D. A new enhanced assumed strain quadrilateral membrane element with drilling degree of freedom and modified shape functions, Int. J. Num. Meth. Eng. 110(6) (2017), 573–600.
21. Chyzy, T. and Mackiewicz, M. Special finite elements with adaptive strainfield on the example of one-dimensional elements, Appl. Sci. 11(2) (2021), 609.
22. Cinefra, M., de Miguel, A.G., Filippi, M., Houriet, C., Pagani, A. and Carrera, E. Homogenization and free-vibration analysis of elastic metamaterial plates by Carrera Unified Formulation finite elements, Mech. Adv. Mater. Struct. 28(5) (2021), 476–485.
23. De Souza, R.M. Force-based finite element for large displacement inelasticanalysis of frames Doctoral dissertation, University of California, Berkeley, 2000.
24. Djoudi, M.S. and Bahai, H. Strain based finite element for the vibration of cylindrical panels with openings, Thin-Walled Struct. 42(4) (2004), 575–588.
25. Dow, J.O., Cabiness, H.D. and Ho, T.H. Linear strain element with curved edges, J. Struct. Eng. 112(4) (1986), 692–708.
26. Felippa C.A. A study of optimal membrane triangles with drilling free doms, Comput. Methods Appl. Mech. Eng. 192(16-18) (2003), 2125–2168.
27. Felippa C.A. and Militello C. Membrane triangles with corner drilling freedomsII. The ANDES element, Finite Elem. Anal. Des. 12(3-4) (1992), 189-201.
28. Gal, E. and Levy, R. Geometrically nonlinear analysis of shell structures using a flat triangular shell finite element, Arch. Comput. Methods Eng. 13(3) (2006), 331–388.
29. Guerraiche, K., Belounar, L. and Bouzidi, L. A new eight nodes brick finite element based on the strain approach, J. Solid Mech. 10(1) (2018), 186–199.
30. Hamadi, D., Abderrahmani, S., Maalem, T. and Temami, O. Efficiency of the Strain Based Approach Formulation for Plate Bending Analysis, World Academy of Science, Engineering and Technology, International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, 8(8) (2014), 1408–1412.
31. Hamadi, D., Ayoub, A. and Maalem, T. A new strain-based finite element for plane elasticity problems, Engineering Computations, 33(2) (2016),562–579.
32. Hamadi, D., Temami, O., Zatar, A. and Abderrahmani, S. A Comparative Study between Displacement and Strain Based Formulated Finite Elements Applied to the Analysis of Thin Shell Structures, World Academy of Science, Engineering and Technology, International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering, 8(8) (2014), 875–880.
33. Hughes, T.J., Taylor, R.L. and Kanoknukulchai, W. A simple and efficient finite element for plate bending, Int. J. Num. Meth. Eng. 11(10)(1977), 1529–1543.
34. Jafari, V., Vahdani, S.H. and Rahimian, M. Derivation of the consistent flexibility matrix for geometrically nonlinear Timoshenko frame finite element, Finite Elem. Anal. Des. 46(12) (2010), 1077–1085.
35. Jang, J. and Pinsky, P.M. An assumed covariant strain based 9-node shellelement, Int. J. Num. Meth. Eng. 24(12) (1987), 2389–2411.
36. Khorsandnia, N., Valipour, H., Foster, S. and Crews, K. A force-based frame finite element formulation for analysis of two-and three-layered composite beams with material non-linearity, Int. J. NonLinear Mech. 62(2014), 12–22.
37. Korelc J. and Wriggers, P. Improved enhanced strain four-node element with Taylor expansion of the shape functions, Int. J. Num. Meth. Eng.. 40(3) (1997), 407–421.
38. Kwan, A.K.H. Analysis of buildings using strain-based element with rotational DOFs, J. Struct. Eng. 118(5) (1992), 1191–1212.
39. Li, L.X., Chen, Y.L. and Lu, Z.C. Generalization of the multi-scale finite element method to plane elasticity problems, Appl. Math. Model. 39(2)(2015), 642–653.
40. Logg, A. Automating the finite element method, Arch. Comput. Methods Eng. 14(2) (2007), 93–138.
41. Manta, D., Gonçalves, R. and Camotim, D. Combining shell and GBT based finite elements: Plastic analysis with adaptive mesh refinement, Thin-Walled Struct. 158 (2021), 107205.
42. Marras, S., Kelly, J.F., Moragues, M., Müller, A., Kopera, M.A., Vàffzquez, M., Giraldo, F.X., Houzeaux, G. and Jorba, O. A review of element-based Galerkin methods for numerical weather prediction: Finite elements, spectral elements, and discontinuous Galerkin, Arch. Computat. Methods Eng. 23 (4) (2016), 673–722.
43. Meier, C., Popp, A. and Wall, W.A. Geometrically exact finite element formulations for slender beams: Kirchhoff–Love theory versus Simo–Reissner theory, Arch. Comput. Methods Eng. 26(1) (2019), 163–243.
44. Messai, A., Belounar, L. and Merzouki, T. Static and free vibration of plates with a strain-based brick element, Eur. J. Comput. Mech. (2019), 1–21.
45. Mousa, A. and Djoudi, M. New strain based triangular finite element for the vibration of circular cylindrical shell with oblique ends, Int. J. Civ. Environ. Eng. 15(5) (2015), 6–11.
46. Neuenhofer, A. and Filippou, F.C. Evaluation of nonlinear frame finite element models, J. Struct. Eng. 123(7) (1997), 958–966.
47. Neuenhofer, A. and Filippou, F.C. Geometrically nonlinear flexibility based frame finite element, J. Struct. Eng. 124(6) (1998), 704–711.
48. Rebiai, C. Finite element analysis of 2-D structures by new strain based triangular element, J. Mech. (2018), 1–9.
49. Rebiai, C. and Belounar, L. A new strain based rectangular finite element with drilling rotation for linear and nonlinear analysis, Archives of civil and mechanical engineering, 13(1) (2013), 72–81.
50. Rebiai, C. and Belounar, L. An effective quadrilateral membrane finite element based on the strain approach, Measurement, 50 (2014), 263–269.
51. Rebiai, C., Saidani, N. and Bahloul, E. A New Finite Element Based on the Strain Approach for Linear and Dynamic Analysis, Research Journal of Applied Sciences, Engineering and Technology, 11(6) (2015), 639–644.
52. Reddy, J.N. An introduction to the finite element method, (Vol. 2, No. 2.2). New York: McGraw-hill, 1993.
53. Rezaiee-Pajand, M., Arabi, E. and Moradi, A.H. Static and dynamicanalysis of FG plates using a locking free 3D plate bending element, J. Braz. Soc. Mech. Sci. Eng. 43(1) (2021), 1–12.
54. Rezaiee-Pajand, M. and Gharaei-Moghaddam, N. Analysis of 3D Timoshenko frames having geometrical and material nonlinearities, Int. J. Mech. Sci. 94 (2015), 140–155.
55. Rezaiee-Pajand, M. and Gharaei-Moghaddam, N. Frame nonlinear analysis by force method, Int. J. Steel Struct. 17(2) (2017), 609–629.
56. Rezaiee-Pajand, M. and Gharaei-Moghaddam, N. Vibration and staticanalysis of cracked and non-cracked non-prismatic frames by force for mulation, Eng. Struct. 185 (2019), 106–121.
57. Rezaiee-Pajand, M. and Gharaei-Moghaddam, N. Force-based curved beam elements with open radial edge cracks, Mech. Adv. Mater. Struct. 27(2) (2020), 128–140.
58. Rezaiee-Pajand, M., Gharaei-Moghaddam, N. and Ramezani, M. Twotriangular membrane element based on strain, Int. J. Appl. Mech. 11(1) (2019), 1950010.
59. Rezaiee-Pajand, M., Gharaei-Moghaddam, N. and Ramezani, M.R. A new higher-order strain-based plane element, Scientia Iranica. Transaction A, Civil Engineering, 26(4) (2019), 2258–2275.
60. Rezaiee-Pajand, M., Gharaei-Moghaddam, N. and Ramezani, M., Strain based plane element for fracture mechanics’ problems, Theor. Appl. Fract. Mech. 108 (2020), 102569.
61. Rezaiee-Pajand, M., Gharaei-Moghaddam, N. and Ramezani, M., Higher-order assumed strain plane element immune to mesh distortion, Eng. Comput. 37(9) (2020), 2957–2981.
62. Rezaiee-Pajand, M., Ramezani, M. and Gharaei-Moghaddam, N. Us ing higher-order strain interpolation function to improve the accuracy of structural responses, Int. J. Appl. Mech. 12(3) (2020), 2050026.
63. Rezaiee-Pajand, M. and Yaghoobi, M. Formulating an effective general ized four-sided element, Eur. J. Mech. A Solids, 36 (2012), 141–155.
64. Rezaiee-Pajand, M. and Yaghoobi, M. A free of parasitic shear strain formulation for plane element, Research in Civil and Environmental En gineering, 1 (2013) 1–27.
65. Rezaiee-Pajand, M. and Yaghoobi, M. A robust triangular membrane element, Lat. Am. J. Solids Struct. 11(14) (2014), 2648–2671.
66. Rezaiee-Pajand, M. and Yaghoobi, M. An efficient formulation for linear and geometric non-linear membrane elements, Lat. Am. J. Solids Struct. 11(6) (2014), 1012–1035.
67. Rezaiee-Pajand, M. and Yaghoobi, M. Two new quadrilateral elements based on strain states, Civ. Eng. Infrastruct. J., 48(1) (2015), 133–156.
68. Rezaiee-Pajand, M. and Yaghoobi, M. A hybrid stress plane element with strain field, Civ. Eng. Infrastruct. J. 50(2) (2017), 255–275.
69. Rezaiee-Pajand, M. and Yaghoobi, M. An efficient flat shell element, Meccanica, 53(4-5) (2018), 1015–1035.
70. Rezaiee-Pajand, M. and Yaghoobi, M. Geometrical nonlinear analysis by plane quadrilateral element, Scientia Iranica, 25(5) (2018), 2488–2500.
71. Sabir, A.B. A rectangular and triangular plane elasticity element with drilling degrees of freedom, InProceedings of the Second International Conference on Variational Methods in Engineering, Brebbia CA ed., Southampton University (1985), 17–25.
72. Sabir, A.B. and Sfendji, A. Triangular and rectangular plane elasticity finite elements, Thin-Walled Struct. 21(3) (1995), 225–232.
73. Saritas, A. and Filippou, F.C. Inelastic axial-flexure–shear coupling in a mixed formulation beam finite element, Int. J. Non Linear Mech. 44(8) (2009), 913–922.
74. Spacone, E., Ciampi, V. and Filippou, F.C.Mixed formulation of nonlinear beam finite element, Comput. Struct. 58 (1) (1996), 71–83.
75. Tayeh, S.M. New strain-based triangular and rectangular finite elements for plane elasticity problems, Thesis, The Islamic University, Gaza, 2003. 76. Taylor, R.L., Filippou, F.C., Saritas, A. and Auricchio, F. A mixed finite element method for beam and frame problems, Comput. Mech. 31(1) (2003), 192–203.
77. To, C.W.S. and Liu, M.L. Hybrid strain based three-node flat triangular shell elements, Finite Elem. Anal. Des., 17(3) (1994), 169–203.
78. Xu, M., Gitman, I.M. and Askes, H. A gradient-enriched continuum model for magneto-elastic coupling: Formulation, finite element implementation and in-plane problems, Comput. Struct. 212 (2019), 275–288.
79. Yang, H.T., Saigal, S., Masud, A. and Kapania, R.K. A survey of recent shell finite elements, Int. J. Num. Meth. Eng. 47(1a3) (2000), 101–127.
80. Zienkiewicz O.C. and Taylor R.L. The finite element method for solid and structural mechanics, Elsevier, 2005.