1- Ahmadi S. H., Mosallaeepour E., Kamgar-Haghighi A.A., and Sepaskhah A.R. 2015. Modeling Maize Yield and Soil Water Content with AquaCrop Under Full and Deficit Irrigation Managements. Water Resources Management 29: 2837-2853.
2- Araya A., Keesstra S.D., and Stroosnijder L. 2010b. Simulating yield response to water of Teff (Eragrostis tef) with FAO's AquaCrop model. Field Crops Research 116: 196-204.
3- Battilani A., Letterio T., and Chiari G. 2015. Aquacrop model calibration and validation for processing tomato crop in a sub-humid climate. pp. 167-174. International Society for Horticultural Science (ISHS), Leuven, Belgium.
4- Doorenbos J., and Kassam A. 1979. Yield response to water. Irrigation and drainage paper 33, 257.
5- Evett S.R., and Tolk J.A. 2009. Introduction: Can Water Use Efficiency Be Modeled Well Enough to Impact Crop Management? Agronomy Journal 101: 423-425.
7- Farrokhi E., Nassiri Mahallati M., Koocheki A., and Beheshti S.A. 2021. Simulation of growth and development of tomato (Lycopersicon esculentum Mill.) Under drought stress: 1- simulation of soil water content, evapotranspiration and green canopy cover. Journal of Water and Soil 35(3): 299-318. (In Persian with English abstract)
8- Foster T., Brozović N., Butler A.P., Neale C.M.U., Raes D., Steduto P., Fereres E., and Hsiao T.C. 2017. AquaCrop-OS: An open source version of FAO's crop water productivity model. Agricultural Water Management 181: 18-22.
9- Greaves E.G., and Wang Y.-M. 2016. Assessment of FAO AquaCrop Model for Simulating Maize Growth and Productivity under Deficit Irrigation in a Tropical Environment. Water 8.
10- Heng L.K., Hsiao T., Evett S., Howell T., and Steduto P. 2009. Validating the FAO AquaCrop Model for Irrigated and Water Deficient Field Maize. Agronomy Journal 101: 488-498.
11- Heuvelink E. 2018. Tomatoes, 2nd edition. Boston, MA: CABI.
12- Hsiao T.C., Heng L., Steduto P., Rojas-Lara B., Raes D., and Fereres E. 2009. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: III. Parameterization and Testing for Maize. Agronomy Journal 101: 448-459.
13- Ismail S., El-Abedin T.Z., El-Ansary D., and Abdel-Al A. 2015. Modification of FAO Crop Model to Simulate Yield Response to Water for Peach Trees. Misr Journal Agriculture Engineering 32: 145-172.
14- Katerji N., Campi P., and Mastrorilli M. 2013. Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region. Agricultural Water Management 130: 14-26.
15- Linker R., Ioslovich I., Sylaios G., Plauborg F., and Battilani A. 2016. Optimal model-based deficit irrigation scheduling using AquaCrop: A simulation study with cotton, potato and tomato. Agricultural Water Management 163: 236-243.
16- Ngouajio M., Wang G., and Goldy R. 2007. Withholding of drip irrigation between transplanting and flowering increases the yield of field-grown tomato under plastic mulch. Agricultural Water Management 87: 285-291.
17- Patanè C., and Cosentino S.L. 2010. Effects of soil water deficit on yield and quality of processing tomato under a Mediterranean climate. Agricultural Water Management 97: 131-138.
18- Patanè C., Tringali S., and Sortino O. 2011. Effects of deficit irrigation on biomass, yield, water productivity and fruit quality of processing tomato under semi-arid Mediterranean climate conditions. Scientia Horticulturae 129: 590-596.
19- Pawar G.S., Kale M.U., and Lokhande J.N. 2017. Response of aquacrop model to different irrigation schedules for irrigated cabbage. Agricultural Research 6: 73-81.
20- Raes D., Steduto P., Hsiao T.C., and Fereres E. 2009. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: II. Main Algorithms and Software Description. Agronomy Journal 101: 438-447.
21- Sandhu R., and Irmak S. 2019. Performance of AquaCrop model in simulating maize growth, yield, and evapotranspiration under rainfed, limited and full irrigation. Agricultural Water Management 223: 105687.
22- Steduto P., Hsiao T.C., Raes D., and Fereres E. 2009. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: I. Concepts and Underlying Principles. Agronomy Journal 101: 426-437.
23- Stricevic R., Cosic M., Djurovic N., Pejic B., and Maksimovic L. 2011. Assessment of the FAO AquaCrop model in the simulation of rainfed and supplementally irrigated maize, sugar beet and sunflower. Agricultural Water Management 98: 1615-1621.
24- Tsakmakis I.D., Kokkos N.P., Gikas G.D., Pisinaras V., Hatzigiannakis E., Arampatzis G., and Sylaios G.K. 2019. Evaluation of AquaCrop model simulations of cotton growth under deficit irrigation with an emphasis on root growth and water extraction patterns. Agricultural Water Management 213: 419-432.
25- Vanuytrecht E., Raes D., Steduto P., Hsiao T.C., Fereres E., Heng L.K., Garcia Vila M., and Mejias Moreno P. 2014. AquaCrop: FAO's crop water productivity and yield response model. Environmental Modelling & Software 62: 351-360.
26- Wang F., Kang S., Du T., Li F., and Qiu R. 2011. Determination of comprehensive quality index for tomato and its response to different irrigation treatments. Agricultural Water Management 98: 1228-1238.
27- WRG (2030 Water Resources Group). 2009. Charting Our Water Future. The Barilla Group, The Coca-Cola Company, The International Finance Corporation, McKinsey & Company, Nestle S.A. Available from:
http://www.2030 wrg.org/wp-content/uploads/2014/07/Charting-Our-Water- Future-Final.pdf