Amiri, S.R. )2018(. Determining the optimum sowing date of chickpea in Kermanshah province using modeling approach. Journal of Plant Ecophysiology. 10(32), 130-141. (In Persian with English Summary)
Arvaneh, H., Abbasi, F., & Eslami, H. (2011). Validation and testing of AquaCrop under farmers’ management, 1st National Conference on Agrometeorology and Agricultural Water Management. University of Tehran, Iran. 22 Novamber 2011, p. 125.
Bakhshi, B., Rostami-Ahmadvandi, H., & Fanaei, H. R. (2021). Camelina, an adaptable oilseed crop for the warm and dried regions of Iran. Central Asian Journal of Plant Science Innovation, 1(1), 39-45. http://www.cajpsi.com/article_128592.html
Bannayan, M., Crout, N. M. J., & Hoogenboom, G. (2003). Application of the CERES-wheat model for within-season prediction of winter wheat yields in the United Kingdom. Agronomy Journal, 95, 114-125. https://doi.org/10.2134/agronj2003.1140a
Boogaard, H. L., Van Diepen, C. A., Rotter, R.P., Cabrera, J. M. C. A., & Van Laar, H. H. (1998). WOFOST 7.1; user's guide for the WOFOST 7.1 Crop Growth Simulation Model and WOFOST Control Center 1.5 (No. 52). SC-DLO.
Boote, K. J., Jones, J.W., Hoogenboom, G., & Pickering, N. B. (1998). The CROPGRO model for grain legumes. In: G. Tsuji G. Hoogenboom and P. Thornton (Eds). Understanding options for agricultural production. Springer, the Netherlands. p. 99-128.
Boote, K.J., Mínguez, M. I., & Sau, F. (2002). Adapting the CROPGRO–legume model to simulate growth of faba bean. Agronomy Journal, 94, 743-756.
Deihimfard, R., Nassiri Mahallati, M., & Koocheki, A. (2015). Yield gap analysis in major wheat growing areas of Khorasan province, Iran, through crop modeling. Field Crops Research, 184, 28-38. https://doi.org/10.1016/j.fcr.2015.09.002
Deligios, P.A., Farci, R., Sulas, L., Hoogenboom, G., & Ledda, L. (2013). Predicting growth and yield of winter rapeseed in a Mediterranean environment: Model adaptation at a field scale. Field Crops Research, 144, 100-112. http://dx.doi.org/10.1016/j.fcr.2013.01.017
Ebrahimipak, N., Egdernezhad, A., Tafteh, A., & Ahmadee, M. (2019). Evaluation of AquaCrop, WOFOST, and CropSyst to simulate rapeseed yield. Iranian Journal of Irrigation and Drainage, 13, 715-726. (In Persian with English Summary)
Fallah, M. H., Nezami, A., Khazaie, H. R., & Nassiri Mahallati, M. (2021). Evaluation of DSSAT-Nwheat model across a wide range of climate conditions in Iran. Journal of Agroecology, 12, 561-580. (In Persian with English Summary) https://doi.org/10.22067/jag.v12i4.77250
FAOSTAT. (2019). FAO, Statistics Division. http://faostat3.fao.org/ download/T/TP/E (verified 15 March 2019).
Farhangfar, S., Bannayan, M., Khazaei, H. R., & Mousavi Baygi, M. (2017). Evaluating canola yield under arid and climate change conditions. Iranian Journal of Field Crops Research, 15, 355-367. (In Persian with English Summary)
Gabrielle, B., Denoroy, P., Gosse, G., Justes, E., & Andersen, M. N. (1998). Development and evaluation of a CERES-type model for winter oilseed rape. Field Crops Research, 57, 95-111. https://doi.org/10.1016/S0378-4290(97)00120-2
Gammelvind, L. H., Schjoerring, J. K., Mogensen, V.O., Jensen, C.R., & Bock, J. G. H. (1996). Photosynthesis in leaves and siliques of winter oilseed rape (Brassica napus L.). Plant and Soil, 186, 227–236.
Geerts, S., & Raes, D. (2009). Deficit irrigation as on-farm strategy to maximize crop water productivity in dry areas. Agricultural Water Management, 96, 1275-1284. https://doi.org/10.1016/j.agwat.2009.04.009
Gilardelli, C., Stella, T., Frasso, N., Cappelli, G., Bregaglio, S., Chiodini, M. E., Scaglia, B., & Confalonieri, R. (2016). Wofost -GTC: A new model for the simulation of winter rapeseed production and oil quality. Field Crops Research, 197, 125-132.
Habekotté, B. (1997). Options for increasing seed yield of winter oilseed rape (Brassica napus L.): A simulation study. Field Crops Research, 54, 109-126. https://doi.org/10.1016/S0378-4290(97)00041-5
Hammer, G. L., Van Oosterom, E., McLean, G., Chapman, S. C., Broad, I., Harland, P., & Muchow, R. C. (2010). Adapting APSIM to model the physiology and genetics of complex adaptive traits in field crops. Journal of Experimental Botany, 61, 2185-2202. https://doi.org/10.1093/jxb/erq095
Heidarybeni, M., Yazdanpanh, H., & Mehnatkesh, A. (2018). Impacts of climate change on canola yields and phenology (Case study: Chahrmahal and Bakhtiari, Iran). Physical Geography Research Quarterly, 50, 373-389. (In Persian with English Summary)
Honar, T., Sabet Sarvestani, A., Kamgar Haghighi, A. A., & Shams, S. (2011). Calibration of crop system model for growth simulation and yield estimation of canola. Water Soil, 25, 593-605. (In Persian with English Summary)
Hoogenboom, G., Porter, C. H., Shelia, V., Boote, K. J., Singh, U., White, J.W., Hunt, L. A., Ogoshi, R., Lizaso, J. I., Koo, J., Asseng, S., Singels, A., Moreno, L. P., & Jones, J. W. (2017). Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.7 (https://DSSAT.net). DSSAT Foundation, Gainesville, Florida, USA.
Hoogenboom, G., Wilkens, P.W., & Tsuji, G.Y. (1999). DSSAT v3, Vol. 4. University of Hawaii, Honolulu, HI.
Jing, Q., Shang, J., Qian, B., Hoogenboom, G., Huffman, T., Liu, J., Ma, B.L., Geng, X., Jiao, X., Kovacs, J., & Walters, D. (2016). Evaluation of the CSM-CROPGRO-Canola model for simulating canola growth and yield at West Nipissing in Eastern Canada. Agronomy Journal, 108, 575-584.
Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., Wilkens, P. W., Singh, U., Gijsman, A. J., & Ritchie, J. T. (2003). DSSAT Cropping System Model. European Journal of Agronomy, 18, 235-265.
Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., Wilkens, P. W., Singh, U., Gijsman, A. J., & Ritchie, J. T. (2003). DSSAT Cropping System Model. European Journal of Agronomy, 18, 235-265.
Kassie, B. T., Asseng, S., Porter, C. H., & Royce, F. S. (2016). Performance of DSSAT-Nwheat across a wide range of current and future growing conditions. European Journal of Agronomy, 81, 27-36. https://doi.org/10.1016/j.eja.2016.08.012
Mojarrad, F., Farhadi, B., & Kheyri, R. (2014). The role of climatic factors in determining the start date of planting and growing period of colza with application of CropSyst model, Case study: Coastal provinces of Caspian Sea in Iran. Physical Geography Research, 46, 463-476. (In Persian with English Summary)
Mousavizadeh, S. F., Honar, T., & Ahmadi, S. H. (2016). Assessment of the AquaCrop Model for simulating canola under different irrigation managements in a semiarid area. International Journal of Plant Production, 10, 425-445.
Nassiri Mahallati, M. (2000). Modeling the Growth Processes of Agricultural Plants. The Publications University of Mashhad. Mashhad, Iran.
Negaresh, A. (2011). Development of oil seed cultivars. Journal of Aftabgardan, 27, 28-39. (In Persian with English Summary)
Oteng-Darko, P., Yeboah, S., Addy, S. N. T., Amponsah, S., & Owusu Danquah, E. (2013). Crop modeling: A tool for agricultural research - A review. E3 Journal of Agricultural Research and Development, 2, 1-6.
Raes, D., Steduto, P., Hsiao, T. C., & Fereres, E. (2009). AquaCrop- the FAO crop model to simulate yield response to water II. Main algorithms and software description. Agronomy Journa,. 101, 438-447. https://doi.org/10.2134/agronj2008.0140s
Rahban, S., Torabi, B., Soltani, A., & Zeinali, E. (2021). Using SSM-iCrop model to predict phenology, yield, and water productivity of canola (Brassica napus L.) in Iran condition. Journal of Agroecology, 13, 157-177. (In Persian with English Summary)
Reddy, T. Y., & Reddi, G. H. S. (2003). Principles of Agronomy. Kalyani Publishers, Ludhiana. pp. 48-77.
Robertson, M. J., Holland, J. F., Kirkegaard, J.A., & Smith, C. J. (1999). Simulating growth and development of canola in Australia. 10th International Rapeseed Congress, Canberra, Australia, CSIRO, Dickson, Australia, 26-29 September 1999, p. 245-247.
Saseendran, S. A., Nielsen, D. C., Ma, L., & Ahuja, L. R. (2010). Adapting CROPGRO for Simulating Spring Canola Growth with Both RZWQM2 and DSSAT 4.0. Agronomy Journal, 102, 1606-1621.
Saseendran, S. A., Nielsen, D. C., Ma, L., & Ahuja, L. R. (2010). Adapting CROPGRO for simulating spring canola growth with both RZWQM2 and DSSAT 4.0. Agronomy Journal, 102, 1606-1621.
Soltani, A., Hammer, G. L., Torabi, B., Robertson, M. J., & Zeinali, E. (2006). Modeling chickpea growth and development: Phonological development. Field Crops Research, 99, 1-13.
Timsina, J., Boote, K. J., & Duffield, S. (2007). Evaluating the CROPGRO soybean model for predicting impacts of insect defoliation and depodding. Agronomy Journal, 99, 148–157. https://doi.org/10.2134/agronj2005.0338
Van Dam, J. C., Huygen, J., Wesseling, J. G., Feddes, R. A., Kabat, P., Van Walsum, P.E.V., Groenendijk, P., & Van Diepen, C.A. (1997). Theory of SWAP Version 2.0, Report #71. Department of Water Resources, Wageningen Agricultural University, pp. 167.
Willmott, C. J. (1982). Some comments on the evaluation of model performance. Bulletin of American Meteorology Society, 63, 1309-1313. https://doi.org/10.1175/1520-0477
Yang, J. M., Yang, J. Y., Liu, S., & Hoogenboom, G. (2014). An evaluation of the statistical methods for testing the performance of crop models with observed data. Agricultural System, 127, 81-89.
Zeleke, K., Luckett, D., & Cowley, R. (2011). Calibration and testing of the FAO AquaCrop model for canola. Agronomy Journal, 103, 1610-1618.
Zomorodian, A., Kavoosi, Z., & Momenzadeh, L. (2011). Determination of EMC isotherms and appropriate mathematical models for canola. Food and Bioproducts Processing, 89, 407-413. https://doi.org/10.1016/j.fbp.2010.10.006