1. Zendehdel M, Ghashghayi E, Hassanpour S, Baghbanzadeh A, Jonaidi H. Interaction between opioidergic and dopaminergic systems on food intake in neonatal layer type chickens. Int J Peptide Res Ther. 2016; 22:83-92.
2. Shojaei M, Yousefi A, Zendehdel M, Khodadadi M. Food intake regulation in birds: the role of neurotransmitters and hormones.Iran J Vet Med. 2020; 14:99–115.
3. Fernández‐Ruiz J, Hernández M, Ramos JA. Cannabinoid–dopamine interaction in the pathophysiology and treatment of CNS disorders. CNS Neurosci Ther. 2010; 16(3):e72-e91.
4. Alizadeh A, Zendehdel M, Bababpour V, Charkhkar S, Hassanpour S. Role of a cannabinoidergic system on food intake in neonatal layer-type chicken. Vet Res Commun. 2015; 39:151–157.
5. Storr MA, Sharkey KA. The endocannabinoid system and gut-brain signalling. Current Opinion Pharmacol. 2007; 7:575–582.
6. Sierra S, Luquin N, Rico AJ, Gómez-Bautista V, Roda E, Dopeso-Reyes IG, Vázquez A, Martínez-Pinilla E, Labandeira-García JL, Franco R, Lanciego JL. Detection of cannabinoid receptors CB1 and CB2 within basal ganglia output neurons in macaques: changes following experimental parkinsonism. Brain Struct Funct. 2015;220(5):2721-38.
7. Alizadeh A, Zendehdel M, Babapour V, Charkhkar S, Hassanpour S. Role of cannabinoidergic system on food intake in neonatal layer-type chicken. Vet Res Commun. 2015; 39:151–157.
8. Emadi L, Jonaidi H, Hosseini Amir Abad E. The role of central CB2 cannabinoid receptors on food intake in neonatal chicks. J Comp Physiol A. 2011; 197:1143-1147.
9. Novoseletsky N, Nussinovitch A, Friedman-Einat M. Attenuation of food intake in chicks by an inverse agonist of cannabinoid receptor 1 administered by either injection or ingestion in hydrocolloid carriers. Gen Comp Endocrinol. 2011; 170:522-527.
10. Hassanpour S, Zendehdel M, Babapour V, Charkhkar S. Endocannabinoid and nitric oxide interaction mediates food intake in neonatal chicken. Br Poult Sci. 2015; 56(4):443-451.
11. : Zendehdel M, Ghashghayi E, Hassanpour S, Baghbanzadeh A, Jonaidi, H. Interaction between opioidergic and dopaminergic systems on food intake in neonatal layer type chicken. International Journal of Peptide Research and Therapeutics. 2016; 22(1): 83-92.
12. Zanganeh F, Panahi N, Zendehdel M, Asghari A. Interconnection between Adrenergic and Dopaminergic Systems in Feeding Behavior in Neonatal Chicks. Archives of Razi Institute. 2021; 76(2): 345-358.
13. Volkow ND, Wang GJ, Baler RD. Reward, dopamine and the control of food intake: implications for obesity. Trends in Cog Sci. 2011;15(1):37-46.
14. Zendehdel M, Ebrahimi-Yeganeh A, Hassanpour S, Koohi MK. Interaction of the dopaminergic and Nociceptin/Orphanin FQ on central feed intake regulation in chicken. Br Poult Sci. 2019; 60(3):317-322.
15. : Rahmani B, Ghashghayi E, Zendehdel M, Khodadadi M, Hamidi B. (2021). The Crosstalk Between Brain Mediators Regulating Food Intake Behavior in Birds: A Review. International Journal of Peptide Research and Therapeutics. 2021; 27: 2349–2370.
16. Alvaro JD, Taylor JR, Duman RS. Molecular and behavioral interactions between central melanocortins and cocaine. J Pharmacol Exper Ther. 2003; 304:391–399.
17. Schneeberger M, Gomis R, Claret M. Hypothalamic and brainstem neuronal circuits controlling homeostatic energy balance. J Endocrinol. 2014; 220: T25–T46.
18. Strader AD, Schiöth HB, Buntin JD. The role of the melanocortin system and the melanocortin-4 receptor in ring dove (Streptopelia risoria) feeding behavior. Brain Res. 2003; 960:112-121.
19. Cheer JF, Wassum KM, Sombers LA, et al. Phasic dopamine release evoked by abused substances requires cannabinoid receptor activation. Journal of Neuroscience. 2007; 27:791–795.
20. Derkach KV, Romanova IV, Shpakov AO. Functional interaction between the dopamine and melanocortin systems of the brain. Neurosci Behav Physiol. 2018; 48 (2):213-219.
21. Cui H, Lutter M. The expression of MC4Rs in D1R neurons regulates food intake and locomotor sensitization to cocaine. Genes Brain Behav. 2013;12(6):658-65.
22. Olanrewaju HA, Purswell J, Collier SD, Branton SL. Effects of light ingress through ventilation fan apertures on selected blood variables of male broilers. Int J Poult Sci. 2017; 16: 288-295.
23. Davis JL, Masuoka DT, Gerbrandt LK, Cherkin A. Autoradiographic distribution of L- proline in chicks after intracerebral injection. Physiol Behav. 1979;22: 693-695.
24. Furuse M, Matsumoto M, Saito N, Sugahara K, Hasegava S. The central corticotropin-releasing factor and glucagon-like peptide -1 in food intake of the neonatal chick. Eur J Pharmacol. 1997; 339: 211-214.
25. Van Tienhoven A, Juhasz LP. The chicken telencephalon, diencephalon and mesencephalon in sterotaxic coordinates. J Comp Neurol. 1962; 118:185-197.
26. Jonaidi H, Noori Z. Neuropeptide Y-induced feeding is dependent on GABAA receptors in neonatal chicks. J Comp Physiol A. 2012; 198: 827-832.
27. Furuse M, Ando R, Bungo T, Ao R, ShimoJO M, Masuda Y. Intracerebroventricular injection of orexins does not stimulate food intake in neonatal chicks. Br Poult Sci. 1999; 40: 698-700.
28. Saito ES, Kaiya H, Tachibana T, Denbow DM, Kangawa K, Furuse M. Inhibitory effect of ghrelin on food intake is mediated by the corticotropin-releasing factor system in neonatal chicks. Regul Peptides. 2005; 125:201-208.
29. Ahmadi F, Zendehdel M, Babapour V, Panahi N. CRF1/CRF2 and MC3/MC4 receptors affect glutamate- induced food intake in neonatal meat-type chicken. Br J Poult Sci. 2019; 21(1):1-10.
30. Ahmadi F, Zendehdel M, Babapour V, Panahi N, Hassanpour S, Khodadadi M. Modulatory function of NMDA glutamate receptor on MC3/MC4 receptors agonist-induced hypophagia in neonatal meat-type chicken. Vet Res Commun. 2017; 41(4):241-248.
31. Ahmadi F, Zendehdel M, Babapour V, Panahi N. CRF1/CRF2 and MC3/MC4 receptors affect glutamate- induced food intake in neonatal meat-type chicken. Br J Poult Sci. 2019; 21(1):1-10.
32. Takeuchi S, Takahashi S. Melanocortin receptor genes in the chicken-tissue distributions. Gen Comp Endocrinol. 1998; 112:220-231.
33. Campos CA, Ritter RC. NMDA-type Glutamate Receptors Participate in Reduction of Food Intake Following Hindbrain Melanocortin Receptor Activation. American Journal of Physiology-Regulatory, Integrative Comp Physiol. 2015; 308(1): R1-9.
34. Takeuchi S, Takahashi S. A possible involvement of melanocortin 3 receptor in the regulation of adrenal gland function in the chicken. Biochimica et Biophys Acta. 1999; 1448: 512-518.
35. Takeuchi S, Teshigawara K, Takahashi S. Molecular cloning and characterization of the chicken proopiomelanocortin (POMC) gene. Biochimica et Biophys Acta. 1999; 1450: 452-459.
36. Campos CA, Shiina H, Ritter RC. Central Vagal Afferent Endings Mediate Reduction of Food Intake by Melanocortin-3/4 Receptor Agonist. J Neurosci. 1994; 34(38):12636-12645.
37. Carlos A, Campos C, Ritter RC. NMDA-type glutamate receptors participate in reduction of food intake following hindbrain melanocortin receptor activation. American Journal of Physiology Regulatory Integrative Comp Physiol. 2015; 308:R1-R9.
38. Roseberry AG. Altered feeding and body weight following melanocortin administration to the ventral tegmental area in adult rats,” Psychopharmacol. (Berl.). 2013; 226(1): 25–34.
39. Pandit R, van der Zwaal EM., Luijendijk MC, et al. Central melanocortins regulate the motivation for sucrose reward,” PLoS One. 2015; 10(3):e0121768.
40. Cui H, Mason BL, Lee C, et al. Melanocortin 4 receptor signaling in dopamine 1 receptor neurons is required for procedural memory learning. Physiol Behav. 2012; 106(2): 201–210.
41. Yoon YR, Baik JH. Melanocortin 4 receptor and dopamine D2 receptor expression in brain areas involved in food intake. Endocrinol Metabol. 2015; 30: 576-583.
42. Di Marzo V GS, Wang L, Liu J, Batkai S, Jarai Z, Fezza F, Miura GI, Palmiter RD, Sugiura T, Kunos G. Leptin regulated endocannabinoids are involved in maintaining food intake. Nature. 2001; 410: 822-825.
43. Wiley JL, Marusich JA, Zhang Y, Fulp A, Maitra R, Thomas BF, Mahadevan A. Structural analogs of pyrazole and sulfonamide cannabinoids: Effects on acute food intake in mice. Eur J Pharmacol. 2012; 695: 62-70.
44. Verty ANA, McFarlane JR, McGregor IS, Mallet PE. Evidence for an interaction between CB1 cannabinoid and melanocortin MCR-4 receptors in regulating food intake. Endocrinol. 2004; 145(7):3224–3231.
45. Daniels D, Patten CS, Roth JD, Yee DK, Fluharty SJ. Melanocortin receptor signaling through mitogen-activated protein kinase in vitro and in rat hypothalamus. Brain Res. 2003; 986: 1–11.
46. Hen G, Yosefi S, Ronin A, Einat P, Rosenblum CI, Denver RJ, Friedman-Einat M. Monitoring leptin activity using the chicken leptin receptor. J Endocrinol. 2008; 197: 325-333.
47. Farkašová H, Hron T, Pačes J, Pajer P, Elleder D. Identification of a GC-rich leptin gene in chicken. Agri Gene. 2016; 1:88–92.
48. Khodadadi M, Zendehdel M, Baghbanzadeh A, Babapour V. Consequence of dopamine D2 receptor blockade on the hyperphagic effect induced by cannabinoid CB1 and CB2 receptors in layers. Br Poult Sci. 2017 Oct;58(5):585-593.
49. Yoefvand S, Hamidi F. The role of ventromedial hypothalamus receptors in the central regulation of food intake. Int J Pept Res Ther. 2021; 27(1): 689-702