- Abe, N., Murata, T., & Hirota, A. (1998). Novel 1,1-diphenyl-2-picryhy- drazyl- radical scavengers, bisorbicillin and demethyltrichodimerol, from a fungus. Bioscience of Biotechnology and Biochemestry, 62, 661-662. https://doi.org/10.1271/bbb.62.661
- Alizadeh, A., Najafi, F., Hadian, J., & Salehi, P. (2018). Effect of different levels of humic-acid and vermicompost extract on growth, yield, morphological and phytochemical properties of Satureja khuzistanica. Journal of Agroecology, 10(1), 69-80. (in Persian with English abstract). https://doi.org/10.22067/jag.v10i1.47161
- Aiken, G. R., McKnight, D. M., Wershaw, R. L., & Mac Carthy, P. (1985). Humic substances in soil, sediment, and water. New York. USA: Wiley InterScience. https://doi.org/10.1002/gj.3350210213
- Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review Plant Biology, 55, 373- https://doi.org/10.1146/annurev.arplant.55.031903.141701
- Arnon, D. (1949). Copper enzyme polyphenoloxides in isolated chloroplast in Beta vulgaris. Plant Physiology, 24, 1-15. https://doi.org/10.1104/pp.24.1.1
- Arve, L. E., Torre, S., Olsen, J. E., & Tanino, K. K. (2011). Stomatal responses to drought stress and air humidity. In: Abiotic stress in plants mechanisms and adaptations (Eds. Shanker, A. K. and Venkateswarlu, B.) 267-280. InTech, Hyderabad, India. https://doi.org/10.5772/24661
- Azevedo, R. A., & Lea, P. J. (2011). Research on abiotic and biotic stress what next? Annual Applied of Biology, 159, 317-319. https://doi.org/10.1111/j.1744-7348.2011.00500.x
- Bates, L. S., Waldran, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water studies. Plant and Soil, 39, 205-208. https://doi.org/10.1007/BF00018060
- Delfine, S., Tognetti, R., Desiderio, E., & Alvino, A. (2005). Effect of foliar application of N and humic acids on growth and yield of durum wheat. Agronomy Sustainable, 25, 183-191. https://doi.org/10.1051/agro:2005017
- Dinha, T. H., Watanabea, K., Takaragawa, H., Nakabarua, M., & Kawamitsu, Y. (2017). Photosynthetic response and nitrogen use efficiency of sugarcane under drought stress conditions with different nitrogen application levels. Plant Production Science, 20(4), 412-422. https://doi.org/10.1080/1343943X.2017.1371570
- Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350-356. https://doi.org/10.1021/ac60111a017
- Dong, L., Córdova-Kreylos, A., Yang, J., Yuan, H., & Scow, K. M. (2009). Humic acids buffer the effects of urea on soil ammonia oxidizers and potential nitrification. Soil Biology and Biochemistry, 41(8), 1612-1621. https://doi.org/10.1016/j.soilbio.2009.04.023
- Gholinezad, E., Aynaband, A., Hassanzade ghorthapeh,, Noormohamadi, G., & Bernousi, I. (2009). Study of the effect of drought stress on yield, yield components and harvest index of sunflower hybrid iroflor at different levels of nitrogen and plant population. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 37(2), 85-94.https://doi.org/10.15835/nbha3723255
- Hatami, H. (2017). The effect of zinc and humic acid applications on yield and yield components of sunflower in drought stress. Journal of Advanced Agricultural Technologies, 4(1), 36-39. https://doi.org/10.18178/joaat.4.1.36-39
- Kafi, M., Borzoei, A., Salehi, M., Kamandi, A., Masoumi, A., & Nabati, J. (2010). Physiology of environmental stresses in plants. Jahad daneshgali Mashhad press. 504 pp.
- Khaninejad, S. (2010). Study the effects of nitrogen and phosphorous levels on physiological, forage characteristics, grain yield and crude protein of Kochia scoparia in irrigating with two saline waters. MSc thesis. Ferdowsi University of Mashhad. 115p.
- Kaya, C., Şenbayram, M., Akram, N. A., Ashraf, M., Alyemeni, M. N., & Ahmad, P. (2020). Sulfur-enriched leonardite and humic acid soil amendments enhance tolerance to drought and phosphorus deficiency stress in maize (Zea mays ). Scientific Reports, 10(1), 1-13. https://doi.org/10.1038/s41598-020-62669-6
- Kaur, S., Gupta, A. K., & Kaur, N. (2002). Effect of osmo and hydropriming of chickpea seeds on seedling growth and carbohydrate metabolism under water deficit stress. Plant Growth Regulation, 37, 17-22. https://doi.org/10.1023/A:1020310008830
- Khazaei, H. R., Nezami, A., Eyshi Rezaei, E., Saeidnejad, A. H., & Pouramir, F. (2013). Evaluation of the effect of Humic substance types and concentrations on germination and seedling properties of two triticale (Triticosecale hexaploide) varieties. Journal of Agroecology, 4(4), 273-281. (in Persian with English abstract). https://doi.org/10.22067/jag.v4i4.17801
- Khorasaninejad, S., Alizadeh Ahmadabadi, A., & Hemmati, K. (2018). The effect of humic acid on leaf morphophysiological and phytochemical properties of Echinacea purpurea under water deficit stress. Scientia Horticulturae, 239, 314-323. https://doi.org/10.1016/j.scienta.2018.03.015
- Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11, 591-592. https://doi.org/10.1042/BST0110591
- Mohsenzadeh, S., Malboobi, M. A., Razavi, K., & Farrahi-Aschtiani, S. (2006). Physiological and molecular responses of Aeluropus lagopoides (Poaceae) to water deficit. Environmental and Experimental Botany, 56, 314-322. https://doi.org/10.1016/j.envexpbot.2005.03.008
- Moosavi, G. R. (2019). Effect of humic Acid and mycorrhiza application on morphological traits and yield of cotton under drought stress. Agriculture and Sustainable Development, 30(1), 121-139. https://doi.org/10.22059/jci.2019.282993.2228
- Nabati, J., Kafi, M., Masoumi, A., Zare Mehrjerdi, M., & Boroumand Rezazadeh, E. (2018). Salinity stress and some physiological relationships in Kochia (Kochia scoparia). Environmental Stresses in Crop Sciences, 11(2), 401-412. (in Persian with English abstract). https://doi.org/10.22077/escs.2017.151.1036
- Oveysi, M., & Ghoshchi, F. (2012). Study of humic acid role on reduction of water deficit stress effects on crops. Agriculture and Sustainable Development, 43, 12-16. (in Persian with English abstract).
- Pizzeghello, D., Nicolini, G., & Nardi, S. (2001). Hormone-like activity of humic substances in Fagus sylvatica New Phytology, 151, 647-657. https://doi.org/10.1046/j.0028-646x.2001.00223.x
- Rezaei Sokht-Abandani, R., Siadat, S. A., Pazoki, A., Lak, Sh., & Mojaddam, M. (2020). Effect of drought stress, different levels of nitrogen and potassium fertilizer on some physiological and agronomical traits of maize hybrid (Zea mays L) cv. single cross 704. Journal of Plant Ecophysiology, 12, 40-52. (in Persian with English abstract). https://dorl.net/dor/20.1001.1.20085958.1399.12.40.4.9
- Riasi, A., Danesh Mesgaran, M., Stern, M. D., & Ruiz Moreno, M. J. (2008). Chemical composition, in situ ruminal degradability and post-ruminal disappearance of dry matter and crude protein from the halophytic plants Kochia scoparia, Atriplex dimorphostegia. Suaeda arcuata and Gamanthus gamacarpus. Animal Feed Science and Technology, 141(3), 209-219. https://doi.org/10.1016/j.anifeedsci.2007.06.014
- Sabzevari, S., & Khazaei, H. R. (2009). The effect of foliar application with humic acid on growth, yield and yield components of wheat (Triticum aestivum ). Journal of Agroecology, 1(2), 53-63. (in Persian with English abstract). https://doi.org/10.22067/jag.v1i2.2686
- Salehi, M., Kafi, M., & Kiani, A. R. (2012). Salinity and water effects on growth, seed production and oil content of Koshia scoparia. Journal of Agronomy, 11(1), 1-8. https://doi.org/10.3923/ja.2012.1.8
- Saravia, D., Farfán-Vignolo, E. R., Gutiérrez, R., De Mendiburu, F., Schafleitner, R., Bonierbale, M. A., & Khan, M. (2016). Yield and physiological response of potatoes indicate different strategies to cope with drought stress and nitrogen fertilization. American Journal of Potato Research, 93, 288-295. https://doi.org/10.1007/s12230-016-9505-9
- Saruhan, V., Kusvuran, A., & Babat, S. (2011). The effect of different humic acid fertilization on yield and yield components performances of common millet (Panicum miliaceum ). Scientific Research and Essays, 6(3), 663-669. https://doi.org/10.5897/SRE10.1153
- Setayesh mehr, Z., Khajeh, H., Esmaeilzadeh, B., & Sabbagh, S. K. (2012). Changes on proline, phenolic compounds and activity of antioxidant enzymes in Anethum graveolens under salt stress. International Journal of Agronomy and Plant Production, 3, 710-715.
- Shen, J., Guo, M., Wang, Y., Yuan, X., Wen, Y., Song, X., Dong, S., & Guo, (2020).Humic acid improves the physiological and photosynthetic characteristics of millet seedlings under drought stress.Plant Signaling and Behavior, 15(8), 1-13. https://doi.org/10.1080/15592324.2020.1774212
- Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Ecology and Viticulture, 16, 144-158. https://doi.org/5344/ajev.1965.16.3.144
- Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2015). Plant Physiology and Development. published by Sinauer Associates. ISBN-13 978-1605353531
- Tran, T., Kano-Nakata, M., Takeda, M., Menge, D., Mitsuya, S., Inukai, Y., & Yamauchi, A. (2014). Nitrogen application enhanced the expression of developmental plasticity of root systems triggered by mild drought stress in rice. Plant and Soil, 378, 139-152.https://doi.org/10.1007/s11104-013-2013-5
|