- Akoyunoglou, G., & Anni, H. (1984). Blue light effect on chloroplast development in higher plants. In: Senger H. (ed.), Blue Light Effects in Biological Systems. Springer-Verlag, Berlin, pp. 397–406.
- Aliniaeifard, S., Seif, M., Arab, M., Zare Mehrjerdi, M., Li, T., & Lastochkina, O. (2018). Growth and photosynthetic performance of Calendula officinalis under monochromatic red light. International Journal of Horticultural Science 5: 123–132. https://doi.org/10.22059 /ijhst .2018.26104 2.248.
- Aliniaeifard, S., & Seifi Kalhor, M. (2017). Effects of blue light on photosynthesis of Tradescantia virginiana plants grown in different VPDs. Journal of Plant Research (Iranian Journal of Biology) 30(2): 420-428. (In Persian with English abstract)
- Appenroth, K.J., Keresztes, A., Sarvari, E., Jaglarz, A., & Fischer, W. (2003). Multiple effects of chromate on Spirodela polyrhiza: electron microscopy and biochemical investigations. Plant Biology 5: 315–323.
- Baker, N.R., & Rosenqvist, E. (2004). Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. Journal of Experimental Botany 55: 1607-1621.
- Baker, N.R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology 59:89–113.
- Bayat, L., Arab, M., Aliniaeifard, S., Seif, M., Lastochkina, O., & Li, T. (2018). Effects of growth under different light spectra on the subsequent high light tolerance in rose plants. AoB Plants 10: 052. https://doi.org/10.1093/aobpl a/ply05 2.
- Bayat, L., Arab, M., & Aliniaeifard, S. (2020). Effects of different light spectra on high light stress tolerance in rose plants (Rosa hybrida ‘Samurai’). Journal of plant processes and function 9(36): 93-103. URL: http://jispp.iut.ac.ir/article-1-1146-fa.html. (In Persian with English abstract)
- Boureima, S., Oukarroum, A., Diouf, M., Cisse, N., & Van Damme, P. (2012). Screening for drought tolerance in mutant germplasm of sesame (Sesamum indicum) probing by chlorophyll a fluorescence. Environmental and Experimental Botany 81: 37–43. https://doi.org/10.1016/j.envex pbot.2012.02.015.
- Çiçek, N., Pekcan, V., Arslan, Ö., Erdal, Ş.Ç., Nalçaiyi, A.S.B., Çil, A.N., Şahin, V., Kaya, Y., & Ekmekçi, Y. (2019). Assessing drought tolerance in field-grown sunflower hybrids by chlorophyll fluorescence kinetics. Brazilian Journal of Botany 42: 249–260. https://doi.org/10.1007/s4041 5-019-00534-1.
- Fan, X.X., Xu, Z.G., Liu, X.Y., Tang, C.M., Wang, L.W., & Han, X.L. (2013). Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue light. Scientia Horticulturae 153: 50-55. https://doi.org/10.1016/j.scienta.2013.01.017.
- Franklin, K.A., & Whitelam, G.C. (2005). Phytochromes and shade-avoidance responses in plants. Annals of Botany 96: 169-175. https://doi.org/10.1093/aob/mci165.
- Fukuda, N., Ajima, C., Yukawa, T., & Olsen, J. (2016). Antagonistic action of blue and red light on shoot elongation in petunia depends on gibberellin, but the effects on flowering are not generally linked to gibberellin. Environmental and Experimental Botany 121: 102-111. https://doi.org/10.1016/j.envexpbot.2015.06.014.
- Ghasemi Ghehsareh, M., & Kafi, M. (2015). Volume Two: Scientific and Practical floriculture (Second Edition). Publishing Author, Iran.
- Goins, G.D., Yorio, N.C., Sanwo, M.M., & Brown, C.S. (1997). Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting. Journal of Experimental Botany 48: 1407-1413.
- Guha, A., Sengupta, D., & Reddy, A.R. (2013). Polyphasic chlorophyll a fluorescence kinetics and leaf protein analyses to track dynamics of photosynthetic performance in mulberry during progressive drought. Journal of Photochemistry and Photobiology B: Biology 119: 71-83. https://doi.org/10.1016/j.jphotobiol.2012.12.006.
- Heijde, M., & Ulm, R. (2012). UV-B photoreceptor-mediated signaling in plants. Trends in Plant Science 17: 230-237. https://doi.org/10.1016/j.tplants.2012.01.007.
- Hogewoning, S.W., Trouwborst, G., Maljaars, H., Poorter, H., van Ieperen, W., & Harbinson, J. (2010). Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. Journal of Experimental Botany 61: 3107-3117. https://doi.org/10.1093/jxb/erq132.
- Jeong, S.W., Hogewoning, S.W., & van Ieperen, W. (2014). Responses of supplemental blue light on flowering and stem extension growth of cut chrysanthemum. Scientia Horticulturae 165: 69-74. https://doi.org/10.1016/j.scienta.2013.11.006.
- Kalaji, H.M., Jajoo, A., Oukarroum, A., Brestic, M., Zivcak, M., Samborska, I.A., Cetner, M.D., Łukasik, I., Goltsev, V., & Ladle, R.J. (2016). Chlorophyll a fluorescence as a tool to monitor physiological status of plants under abiotic stress conditions. Acta Physiologiae Plantarum 38: 102. https://doi.org/10.1007/s11738-016-2113-y.
- Kim, H.H., Goins, G.D., Wheeler, R.M., & Sager, J.C. (2004). Green-light supplementation for enhanced lettuce growth under red- and blue-light-emitting diodes. Horticultural Science 39: 1617-1622.
- Lee, T., Woo, S., Kwak, M., Inkyin, K., Lee, K., Jang, J., & Kim, I. (2016). Photosynthesis and chlorophyll fluorescence responses of Populus sibirica to water deficit in a desertification area in Mongolia. Photosynthetica 54: 317–320
- Lichtenthaler, H., Langsdorf, G., Lenk, S., & Buschmann, C. (2005). Chlorophyll fluorescence imaging of photosynthetic activity with the flash-lamp fluorescence imaging system. Photosynthetica 43: 355–369.
- Lichtenthaler, H.K., Ač, A., Marek, M.V., Kalina, J., & Urban, O. (2007). Differences in pigment composition, photosynthetic rates and chlorophyll fluorescence images of sun and shade leaves of four tree species. Plant Physiology and Biochemistry 45: 577–588
- Matsuda, R., Ohashi-Kaneko, K., Fujiwara, K., & Kurata, K. (2008). Effects of blue light deficiency on acclimation of light energy partitioning in PSII and CO2 assimilation capacity to high irradiance in spinach leaves. Plant Cell Physiology 49: 664-670. https://doi.org/10.1093/pcp/pcn041.
- Meng, L.L., Song, J.F., Wen, J., Zhang, J., & Wei, J.H.J.P. (2016). Effects of drought stress on fluorescence characteristics of photosystem II in leaves of Plectranthus scutellarioides. Photosynthetica 54: 414–421. https:doi.org/10.1007/s11099-016-0191-0.
- Morrow, R.C. (2007). LED light in horticulture. Horticultural Science 43: 1947-1950. https://doi.org/10.21273/HORTSCI.43.7.1947.
- Mott, K.A. (2009). Opinion: Stomatal responses to light and CO2 depend on the mesophyll. Plant Cell & Environment 32: 1479-1486. https://doi.org/10.1111/j.1365-3040.2009.02022.x.
- Neelam, S., & Subramanyam, R. (2013). Alteration of photochemistry and protein degradation of photosystem II from Chlamydomonas reinhardtii under high salt grown cells. Journal of Photochemistry and Photobiology B: Biology 124: 63–70. https://doi.org/10.1016/j.jphotobiol.2013.04.007.
- Nhut, D.T., Takamura, T., Watanabe, H., Okamoto, K., & Tanaka, M. (2003). Responses of strawberry plantlets cultured in vitro under super bright red and blue light-emitting diodes (LEDs). Plant Cell, Tissue and Organ Culture 73: 43-52. https://doi.org/10.1023/A:1022638508007.
- Oukarroum, A., El Madidi, S., Schansker, G., & Strasser, R.J. (2007). Probing the responses of barley cultivars (Hordeum vulgare ) by chlorophyll a fluorescence OLKJIP under drought stress and re-watering. Environmental and Experimental Botany 60: 438–446
- Prioul, J.L., Brangeon, J., & Reyss, A. (1980). Interaction between external and internal conditions in the development of photosynthetic features in a grass leaf: I. Regional responses along a leaf during and after low-light or high-light acclimation. Plant Physiology 66: 762–769
- Rapacz, M., Sasal, M., Kalaji, H.M., & Kościelniak, J. (2015). Is the OJIP Test a Reliable Indicator of Winter Hardiness and Freezing Tolerance of Common Wheat and Triticale under Variable Winter Environments? PloS one; 10: e0134820. https://doi.org/10.1371/journal.pone.0134820.
- Runkle, E., & Blanchard, M. (2010). Use of lighting to accelerate crop timing. Greenhouse Grower, Available at: http:// www.flor.hrt.msu.edu/assets/PdfAttachments/Runkle-Blanchard-UseofLighting.pdf. (Visited 14 November 2018).
- Saebo, A., Krekling, T. & Appelgren, M. (1995). Light quality affects photosynthesis and leaf anatomy of brich plantlets in vitro. Plant Cell, Tissue and Organ Culture 41: 177–185.
- Souza, R., Machado, E., Silva, J., Lagôa, A., & Silveira, J. (2004). Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environmental and Experimental Botany 51: 45–56. https://doi.org/10.1016/S0098-8472(03)00059-5.
- Strasser, R.J., Srivastava, A., & Tsimilli-Michael, M. (2000). The fluorescence transient as a tool to characterize and screen photosynthetic samples. Probing Photosynthesis: Mechanisms, Regulation and Adaptation 25: 445-483.
- Whitelam, G.C., & Halliday, K.J. (2008). Light and Plant Development. Annual Plant Reviews. Vol. 30. John Wiley & Sons.
- Yeh, N., & Chung, J.P. (2009). High-brightness LEDs-energy efficient lighting sources and their potential in indoor plant cultivation. Renewable and Sustainable Energy Reviews 13: 2175-2180. https://doi.org/10.1016/j.rser.2009.01.027.
- Yu, W., Liu, Y., Song, L., Jacobs, D.F., Du, X., Ying, Y., Shao, Q., & Wu, J. (2017). Effect of differential light quality on morphology, photosynthesis, and antioxidant enzyme activity in Camptotheca acuminata seedlings. Journal of Plant Growth Regulation 36: 148-160. https://doi.org/10.1007/s00344-016-9625-y.
- Zivcak, M., Brestic, M., & Kalaji, H.M. (2014). Photosynthetic responses of sun-and shade-grown barley leaves to high light: is the lower PSII connectivity in shade leaves associated with protection against excess of light? Photosynthesis research 119: 339-354. https://doi.org/10.1007/s11120-014-9969-8.
|