- Amirian C.A., Taghizadeh Mehrjardi R., Sarmadian F., and Mohammadi J. 2018. Study of lateral and vertical distribution of soil calcium carbonate using geostatistics and spline functions. (In Persian with English abstract)
- Arrouays D., Grundy M.G., Hartemink A.E., Hempel J.W., Heuvelink G.B., Hong S.Y., Lagacherie P., Lelyk G., McBratney A.B., McKenzie N.J., and dL Mendonca-Santos M. 2014. GlobalSoilMap: Toward a fine-resolution global grid of soil properties. Advances in Agronomy 125: 93-134.
- Asgari Hafshejani N., and Jafari S. 2017. The study of particle size distribution of calcium carbonate and its effects on some soil properties in Khuzestan province. Iran Agricultural Research 36(2): 71-80.
- Bouslihim Y., Rochdi A., and Paaza N.E.A. 2021. Machine learning approaches for the prediction of soil aggregate stability. Heliyon 7(3): e06480.
- Chakan A.A., Taghizadeh-Mehrjardi R., Kerry R., Kumar S., Khordehbin S., and Khanghah S.Y. 2017. Spatial 3D distribution of soil organic carbon under different land use types. Environmental Monitoring and Assessment 189(3): 131.
- Esfandiarpour Boroujeni I., ShahiniShamsabadi M., Shirani H., Mosleh Z., BagheriBodaghabadi M., and Salehi M.H. 2020. Assessment of different digital soil mapping methods for prediction of soil classes in the Shahrekord plain, Central Iran. Catena 193: 104648.
- Esmaeili E., Shahbazi F., Sarmadian F., Jafarzadeh A.A., and Hayati B. 2021. Land capability evaluation using NRCS agricultural land evaluation and site assessment (LESA) system in a semi-arid region of Iran. Environmental Earth Sciences 80(4): 1-14.
- 1973. Irrigation, Drainage and salinity. FAO/UNESCO.
- Hengl T., Mendes de Jesus J., Heuvelink G.B., Ruiperez Gonzalez M., Kilibarda M., Blagotić A., Shangguan W., Wright M.N., Geng X., Bauer-Marschallinger B., and Guevara M.A. 2017. SoilGrids250m: Global gridded soil information based on machine learning. PLoS one 12(2): e0169748.
- Hengl T., Miller M.A., Krizan J., Shepherd K.D., Sila A., Kilibarda M., Antonijevic O., Glušica L., Dobermann A., Haefele S.M., and McGrath S.P. 2021. African soil properties and nutrients mapped at 30 m spatial resolution using two-scale ensemble machine learning. Scientific Reports 11(1): 1-18.
- Keshavarzi A., Sarmadian F., Labbafi R., and Ahmadi A. 2011. Developing pedotransfer functions for estimating field capacity and permanent wilting point using fuzzy table look-up scheme. Computer and Information Science 4(1): 130.
- Khodaverdiloo H., Homaee M., van Genuchten M.T., and Dashtaki S.G. 2011. Deriving and validating pedotransfer functions for some calcareous soils. Journal of Hydrology 399(1-2): 93-99.
- Khaledian Y., and Miller B.A. 2020. Selecting appropriate machine learning methods for digital soil mapping. Applied Mathematical Modelling 81: 401-418.
- Kuhn M., and Johnson K. 2013. Applied predictive modeling (Vol. 26, p. 13). New York: Springer.
- Lacoste M., Minasny B., McBratney A., Michot D., Viaud V., and Walter C. 2014. High resolution 3D mapping of soil organic carbon in a heterogeneous agricultural landscape. Geoderma 213: 296-311.
- McBratney A.B., Santos M.M., and Minasny B. 2003. On digital soil mapping. Geoderma 117(1-2): 3-52.
- Mahmoudabadi E., Karimi A., Haghnia G.H., and Sepehr A. 2017. Digital soil mapping using remote sensing indices, terrain attributes, and vegetation features in the rangelands of northeastern Iran. Environmental Monitoring and Assessment 189(10): 1-20.
- Malone B.P., McBratney A.B., Minasny B., and Laslett G.M. 2009. Mapping continuous depth functions of soil carbon storage and available water capacity. Geoderma 154(1-2): 138-152.
- McDonald R.C., Isbell R.F., Speight J.G., Walker J., and Hopkins M.S. 1998. Australian soil and land survey: field handbook (No. Ed. 2). CSIRO publishing.
- Mosleh Z., Salehi M.H., Jafari A., Borujeni I.E., and Mehnatkesh A. 2016. The effectiveness of digital soil mapping to predict soil properties over low-relief areas. Environmental Monitoring and Assessment 188(3): 195.
- Mousavi S.R., Parsayi F., Rahmani A., Sedri, M.H., and Kohsar Bostani M. 2020. Spatial Prediction Some of the Surface Soil Properties Using Interpolation and Machine Learning Models. Journal of Soil Management and Sustainable Production 10(3): 27-49. (In Persian with English abstract).
- Mousavi S.R., Sarmadian F., Dehghani S., Sadikhani M.R., and Taati A. 2017. Evaluating inverse distance weighting and kriging methods in estimation of some physical and chemical properties of soil in Qazvin Plain. Eurasian Journal of Soil Science 6(4): 327-336.
- Mousavi S.R, Sarmadian F., Omid M., and Bogaert P. 2021. Digital modeling of three-dimensional soil salinity variation using machine learning algorithms in arid and semi-arid land of Qazvin plain. Iranian Journal of Soil and Water Research, doi: 10.22059/ijswr.2021.323030.668957. (In Persian with English abstract)
- Mulder V.L., Lacoste M., Richer-de-Forges A.C., Martin M.P., and Arrouays D. 2016. National versus global modelling the 3D distribution of soil organic carbon in mainland France. Geoderma 263: 16-34.
- Nelson R.E. 1982 Carbonate and gypsum. In: Page AL (ed) Methods of soil analysis. American Society of Agronomy, Madison, pp 181–197.
- Nemes A., Rawls W.J., and Pachepsky Y.A. 2006. Use of the nonparametric nearest neighbor approach to estimate soil hydraulic properties. Soil Science Society of America Journal 70(2): 327-336.
- Pahlavan-Rad M.R., and Akbarimoghaddam A. 2018. Spatial variability of soil texture fractions and pH in a flood plain (case study from eastern Iran). Catena 160: 275-281.
- Padarian J., Minasny B., and McBratney A.B. 2019. Using deep learning for digital soil Soil 5: 79–89.
- Parsaie F., Firouzi A.F., Mousavi S.R., Rahmani A., Sedri M.H., and Homaee M. 2021. Large-scale digital mapping of topsoil total nitrogen using machine learning models and associated uncertainty map. Environmental Monitoring and Assessment 193(4): 1-15.
- Presley D.R., Ransom M.D., Kluitenberg G.J., and Finnell P.R. 2004. Effects of thirty years of irrigation on the genesis and morphology of two semiarid soils in Kansas.
- Rahmani A., Sarmadian F., Mousavi S.R., and Khamoshi S.E. 2020. Application of Geomorphometric attributes in digital soil mapping by using of machine learning and fuzzy logic approaches. Journal of Range and Watershed Managment 73(1): 105-124. (In Persian)
- Rezapour S. 2014. Response of some soil attributes to different land use types in calcareous soils with Mediterranean type climate in north-west of Iran. Environmental Earth Sciences 71(5): 2199-2210.
- Rossel R.V., Chen C., Grundy M.J., Searle R., Clifford D., and Campbell P.H. 2015. The Australian three-dimensional soil grid: Australia’s contribution to the GlobalSoilMap project. Soil Research 53(8): 845-864.
- Rostaminia M., Nouri N., Keshavarzi A., and Rahmani A. 2019. Quantitative Evaluation and Zoning of Spatial Distribution of Soil Quality Index in Some Parts of Arid and Semi-Arid Lands of Western Iran (Case Study: Kane Sorkh Region, Ilam Province). Iranian Journal of Soil and Water Research 50(7): 1701-1719. (In Persian with English abstract)
- Sreenivas K., Dadhwal V.K., Kumar S., Harsha G.S., Mitran T., Sujatha G., Suresh G.J.R., Fyzee M.A., and Ravisankar T. 2016. Digital mapping of soil organic and inorganic carbon status in India. Geoderma 269: 160-173.
- Staff S.S. 2014. Keys to Soil Taxonomy, 12th Edn Washington. DC: Natural Resources Conservation Service, United States Department of Agriculture.
- Taghizadeh Mehrjardi R., Nabiollahi K., and Kerry R. 2016. Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran. Geoderma 266: 98-110.
- Taghizadeh Mehrjardi R., Minasny B., Sarmadian F., and Malone P.B. 2014a. Digital mapping of soil salinity in Ardakan region, central Iran. Geoderma 213: 15-28.
- Taghizadeh-Mehrjerdi R., Amirin Chakan A., and Sarmadian F. 2014b. 3D digital mapping of soil cation exchange capacity in Dorud, Lorestan province. Journal of Water and Soil 28: 998-1010. (In Persian with English abstract)
- Tan W.F., Zhang R., Cao H., Huang C.Q., Yang Q.K., Wang M.K., and Koopal L.K. 2014. Soil inorganic carbon stock under different soil types and land uses on the Loess Plateau region of China. Catena 121: 22-30.
- Vargas R., Pankova E.I., Balyuk S.A., Krasilnikov P.V., and Khasankhanova G.M. 2018. Handbook for saline soil management. FAO/LMSU.
- Viscarra Rossel R.A., and McBratney A.B. 2008. Diffuse reflectance spectroscopy as a tool for digital soil mapping. In ‘Digital soil mapping with limited data’. Developments in Soil Science series. (Eds AE Hartemink, AB McBratney, L Mendonça-Santos) (Elsevier Science: Amsterdam).
- Wang Y., and Witten I.H. 1997. Inducing model trees for continuous classes. In Proceedings of the Ninth European Conference on Machine Learning. pp. 128–137.
- Wilding L.P. 1985. Spatial variability: its documentation, accomodation and implication to soil surveys. In Soil spatial variability, Las Vegas NV, 30 November-1 December 1984 (pp. 166-194).
- Zeraatpisheh M., Ayoubi S., Jafari A., Tajik S., and Finke P. 2019. Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran. Geoderma 338: 445-452.
- Zhao W., Zhang R., Huang C., Wang B., Cao H., Koopal L.K., and Tan W. 2016. Effect of different vegetation cover on the vertical distribution of soil organic and inorganic carbon in the Zhifanggou Watershed on the loess plateau. Catena 139: 191-198.
|