- Ajadi O., Barr, J., Liang, S. Z., Ferreira, R., Kumpatla, S. P., Patel, R., & Swatantran, A. (2021). Large-scale crop type and crop area mapping across Brazil using synthetic aperture radar and optical imagery. International Journal of Applied Earth Observations and Geoinformation, 97, 1-16. https://doi.org/10.1016/j.jag.2020.102294
- Akbari, M., Mamanpoush, A. R., Gieske, A., Miranzadeh, M., Torabi, M., & Salemi, H. R. (2006). Crop and land cover classification in Iran using Landsat 7 imagery. International Journal of Remote Sensing, 27(19), 4117-4135. https://doi.org/10.1080/01431160600784192
- Alexandridis, T. K., Zalidis, G. C., & Silleos, N. G. (2008). Mapping irrigated area in Mediterranean basins using low cost satellite Earth Observation. Computers and Electronics in Agriculture, 64(2), 93-103. https://doi.org/10.1016/j.compag.2008.04.001
- Alipour, F., Agh-Khani, M. H., Abbaspour-Fard, M. H., & Sepehr, A. (2014). Limiting and estimating the area under cultivation of agricultural products to help satellite images (Case study: Astan Quds Razavi sample farm). Journal of Agricultural Machinery, 4(2), 244-254. (in Persian). https://doi.org/10.22067/jam.v4i2.34827
- Arekhi, S., & Adib-nejad, M. (2011). Evaluating the efficiency of support vector machine algorithms for land use classification using Landsat + ETM satellite data (Case study: Ilam area). Iranian Range and Desert Research, 3(44), 420-440. (in Persian).
- Bazzi, H., Baghdadi, N., Ienco, D., El Hajj, M., Zribi, M., Belhouchette, H., Escorihuela, M. J., & Demarez, V. (2019). Mapping Irrigated Areas Using Sentinel-1 Time Series in Catalonia, Spain. Remote Sensing, 11, 1836. https://doi.org/10.3390/rs11151836
- Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2, 121-167.
- Carlson, T. N., Gillies, R. R., & Perry, E. M. (1994). A method to make use of thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sensing Reviews, 9(1-2), 161-173. https://doi.org/10.1080/02757259409532220
- Cheng, Y. B., Zarco-Tejada, P. J., Riaño, D., Rueda, C. A., & Ustin, S. L. (2006). Estimating vegetation water content with hyperspectral data for different canopy scenarios: Relationships between AVIRIS andMODIS indexes. Remote Sensing of Environment, 105(4), 30 2006, 354-366
- Delloye, C., Weiss, M., & Defourny, P. (2018). Retrieval of the canopy chlorophyll content from Sentinel-2 spectral bands to estimate nitrogen uptake in intensive winter wheat cropping systems. Remote Sensing of Environment, 216, 245-261. https://doi.org/10.1016/j.rse.2018.06.037
- Demarez, V., Helen, F., Marais-Sicre, C., & Baup, F. (2019). In-Season Mapping of Irrigated Crops Using Landsat 8 and Sentinel-1 Time Series. Remote Sensing, 11(2), 118. https://doi.org/10.3390/rs11020118
- Dong, J., Kaufmann, R. K., Myneni, R. B., Tucker, C. J., Kauppi, P. E., Liski, J., Buermann, W., Alexeyev, V., & Hughesg, M. K. (2003). Hughes. Remote sensing estimates of boreal and temperate forest woody biomass: Carbon pools, sources, and sinks. Remote Sensing of Environment, 84, 393-410. https://doi.org/10.1016/S0034-4257(02)00130-X
- Droogers, P. 2002. Global irrigated area mapping: overview and recommendations, Working Paper 36, International Water Management Institute. Colombo, Sri Lanka.
- Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Famiglietti, J. S., & Rodell, M. (2013). Water in the balance. Science 340(6138), 1300-1301. https://doi.org/10.1126/science.1236460
- Farajzadeh, M. (2005). Drought from Concept to Solutions. National Geographical Organization Publication.
- Fatemi, S. B., & Rezaee, F. (2005). Fundamental of Remote Sensing. 1st Pub, Azade Publication. Tehran.
- Ferrant, S., Selles, A., Le Page, M., Herrault, P. A., Pelletier, C., Al-Bitar, A., Mermoz, S., Gascoin, S., Bouvet, A., & Saqalli, M. (2017). Detection of irrigated crops from Sentinel-1 and Sentinel-2 data to estimate seasonal groundwater use in south India. Remote Sensing, 9, 11-19. https://doi.org/10.3390/rs9111119
- Gao, B. C. (1996). NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing Environment, 58, 257-266. https://doi.org/10.1016/S0034-4257(96)00067-3
- Gao, F., Schaaf, C. B., Strahler, A. H., Roesch, A., Lucht, W., & Dickinson R. (2005). MODIS biodirectional reflectance distribution function and albedo climate modeling grid products and the variability of albedo for major global vegetation types. Journal of Geophysical Research Atmospheres, 110, 1-13. https://doi.org/10.1029/2004JD005190
- Giannini, A., & Bagnoni, V. (2000). Schede di tecnica irrigua per l’agricoltura toscana. ARSIA– Servizio Telematico Irrigazione. Regione Toscana, EFFEMME Lito, Firenze, pp. 66-97 ISBN 88-8295-015-018.
- Gupta, O., Das, A. J., Hellerstein, J., & Raskar, R. (2018). Machine Learning approaches for large scale classification of produce, Scientific Reports Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. 8:5226. DOI: https://doi.org/10.1038/s41598-018-23394-3
- Guzinski, R., & Nieto, H. (2019). Evaluating the feasibility of using Sentinel-2 and Sentinel-3 satellites for high-resolution evapotranspiration estimations. Remote Sensing of Environment, 221, 157-172. https://doi.org/10.1016/j.rse.2018.11.019
- Hartmann, D. L., Tank, A. M. K., Rusticucci, M., Alexander, L. V., Brönnimann, S., Charabi, Y. A. R., Dentener, F. J., Dlugokencky, E. J., Easterling, D. R., & Kaplan, A. (2013). Observations: atmosphere and surface. Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.
- Heenkenda, M. K., Joyce, K. E., Maier, S. W., & De Bruin, S. (2015). Quantifying mangrove chlorophyll from high spatial resolution imagery. ISPRS Photogrammetry of Remote Sensing, 108, 234-244. https://doi.org/10.1016/j.isprsjprs.2015.08.003
- Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1-2), 195-213.
- Immitzer, M., Vuolo, F., Atzberger, C., Immitzer, M., Vuolo, F., & Atzberger, C. (2016). First experience with Sentinel-2 data for crop and tree species classifications in central Europe. Remote Sensing, 8, 166. https://doi.org/10.3390/rs8030166
- Mahmoud, A. M. A., Hasmadi, M., Alias, M. S., & Alias, M. A. (2016). Rangeland degradation assessment in the south slope of the Al-Jabal Al-Akhdar, northeast Libya using remote sensing technology. Rangeland Science, 6(1), 73-81.
- Martimort, P. (2012). Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sensing of Environment, 120, 25-36.
- Matsushita, B., Wei, Y., Jin, C., Yuyichi, O., & Guoyn, Q. (2007). Sensivity of the enhanced vegetation index (EVI) and NDVI to topographic effects: A case study in high-density Cypress forest. Sensors, 7(11), 2636-2651. https://doi.org/10.3390/s7112636
- Morfitt, R., Barsi, J., Levy, R., Markham, B., Micijevic, E., Ong, L., Scaramuzza, P., & Vanderwerff, K. (2015). Landsat-8 operational land imager (OLI) radiometric performance on-orbit. Remote Sensors, 7, 2208-2237.
- Myneni, R., & Williams, D. (1994). On the relationship between FAPAR and NDVI. Remote Sensing of Environment, 49, 200-211. https://doi.org/10.1016/0034-4257(94)90016-7
- Nguyen, T. T., Hoang, T. D., Pham, M. T., Vu, T. T., Nguyen, T. H., Huynh, Q. T., & Jo, J. (2020). Monitoring agriculture areas with satellite images and deep learning. Applied Soft Computing, 95, 1-16. https://doi.org/10.1016/j.asoc.2020.106565
- Pageot, Y., Bau, F., Inglada, J., Baghdadi, N., & Demarez, V. (2020). Detection of Irrigated and Rainfed Crops in Temperate Areas Using Sentinel-1 and Sentinel-2 Time Series. Remote Sensing, 12, 1-19. https://doi.org/10.3390/rs12183044
- Pastor-Guzman, J., Brown, L., Morris, H., Bourg, L., Goryl, P., Dransfeld, S., & Dash, J. (2020). The sentinel-3 OLCI terrestrial chlorophyll index (OTCI): algorithm improvements, spatiotemporal consistency and continuity with the MERIS archive. Remote Sensing, 12, 2652-2674. https://doi.org/10.3390/rs12162652
- Pelletier, C., Valero, S., Inglada, J., Champion, N., Marais Sicre, C., & Dedieu, G. (2017). Effect of Training Class Label Noise on Classification Performances for Land Cover Mapping with Satellite Image Time Series. Remote Sensing, 9, 173. https://doi.org/10.3390/rs9020173
- Peña-Arancibia, J. L., McVicar, T. R., Paydar, Z., Li, L., Guerschman, J. P., Donohue, R. J., Dutta, D., Podger, G. M., van Dijk, A. I. J. M., & Chiew, F. H. S. (2014). Dynamic identification of summer cropping irrigated areas in a large basin experiencing extreme climatic variability. Remote Sensing of Environment, 154, 139-152. https://doi.org/10.1016/j.rse.2014.08.016
- Rahimzadegan, M., & Pourgholam, M. (2016). Determining the area under saffron cultivation using Landsat images (Case study: City Torbat Heydariyeh). Remote Sensing and GIS in Natural Resource, 7(4), 97-115. (in Persian). https://doi.org/10.22048/jsat.2017.48518.1194
- Schucknecht, A., Erasmi, S., Niemeyer, I., & Matschullat, J. (2013). Assessing vegetation variability and trends in north-eastern Brazil using AVHRR and MODIS NDVI time series. Remote Sensing, 46, 40-59. https://doi.org/10.5721/EuJRS20134603
- Sepulcre-Canto, G., Zarco-Tejada, P. J., Sobrino, J. A., Berni, J. A. J., Jimenez-Munoz, J. C., & Gastellu-Etchegorry, J. P. (2008). Discriminating irrigated and rainfed olive orchards with thermal ASTER imagery and DART 3D simulation. Agricultural and Forest Meteorology, 149, 962-975. https://doi.org/10.1016/j.agrformet.2008.12.001
- Shamal, S. A. M., & Weatherhead, K. (2014). Assessing spectral similarities between rainfed and irrigated croplands in a humid environment for irrigated land mapping. IP Publication Ltd, 43(2), 109-114. https://doi.org/10.5367/oa.2014.0168
- Tso, B., & Mather, P. (2009). Support Vector machines, in Classification Methods for Remotely sensed Data. 1st ed: CRC Press: 125-153.
- Vogel, E., Donat, M. G., Alexander, L. V., Meinshausen, M., Ray, D. K., Karoly, D., Meinshausen, N., & Frieler, K. (2019). The effects of climate extremes on global agricultural yields. Environmental Research Letters, 14(5), 1-13. https://doi.org/10.1088/1748-9326/ab154b
- Vuolo, F., Dash, J., Curran, P. J., Lajas, D., & Kwiatkowska, E. (2012). Methodologies and uncertainties in the use of the terrestrial chlorophyll index for the Sentinel-3 mission. Remote Sensing, 4, 1112-1133. https://doi.org/10.3390/rs4051112
- Vuolo, F., Neuwirth, M., Immitzer, M., Atzberger, C., & Ng, W. T. (2018). How much does multi-temporal Sentinel-2 data improve crop type classification? Applied Earth Observation and Geo-information, 72, 122-130. https://doi.org/10.1016/j.jag.2018.06.007
- Wacker, A. G., & Landgrebe, D. A. (1972). Minimum Distance Classification in Remote Sensing. LARS Technical Reports. Paper 25. https://docs.lib.purdue.edu/larstech/25
- Wardlow, B. D., Egbert, S. L., & Kastens, J. H. (2007). Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sensing of Environment, 108(3), 290-310. https://doi.org/10.1016/j.rse.2006.11.021
|