- Karimi Zandian, and M. R. Keyvanpour, “SSLBM: A New Fraud Detection Method Based on Semi-Supervised Learning,” Computer and Knowledge Engineering, vol. 2, no. 2, pp.10-18, 2020.
- Ab azar, A. Shahmansoorian, M. Davoudi, “Uncertainty-aware Path Planning Using Reinforcement Learning and Deep Learning Methods,” Computer and Knowledge Engineering, 2020.
- Kianian, S. Farzi, “Assessment of Customer Credit Risk using an Adaptive Neuro-Fuzzy System,” Computer and Knowledge Engineering, vol. 2, no. 2, pp.19-28, 2020.
- Kelathodi Kumaran, D. Prosad Dogra, P. Pratim Roy, A. Mitra, “Video Trajectory Classification and Anomaly Detection Using Hybrid CNN-VAE,” arXiv preprint arXiv:1812.07203, 2018.
- Mirjalili, A. Lewis, “The whale optimization algorithm. Advances in engineering software,” 95, pp.51-67, 2016.
- Barucija, A. Mujcinovic, B. Muhovic, E. Zunic, D. Donko, “Data-driven approach for anomaly detection of real GPS trajectory data,” In2019 XXVII International Conference on Information, Communication and Automation Technologies (ICAT) IEEE, pp. 1-6, 2019.
- Choong, L. Angeline, RK. Chin, KB. Yeo, KT. Teo. “Modeling of vehicle trajectory using K-means and fuzzy C-means clustering,” IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET) IEEE, pp. 1-6, 2018.
- Li, T. Guo, R. Xia, W. Xie, “Road traffic anomaly detection based on fuzzy theory,”IEEE Access, vol. 6, pp.40281-8, 2018.
- Kumar, V. Vaidehi, “A transfer learning framework for traffic video using neuro-fuzzy approach,” Sādhanā, vol. 42, no. 9, pp.1431-42, 2017.
- Nawaratne, D. Alahakoon, D. De Silva, X. Yu, “Spatiotemporal anomaly detection using deep learning for real-time video surveillance,” IEEE Transactions on Industrial Informatics, vol. 16, no. 1, pp. 393-402, 2019.
- Moallem, A. Pouyan, “Anomaly Detection using LSTM AutoEncoder,” Journal of Modeling in Engineering, vol. 17, no.56, pp. 191-211, 2019.
- Aboah, “A vision-based system for traffic anomaly detection using deep learning and decision trees,” In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition , pp. 4207-4212, 2021.
- Zhang, Y. Zheng, Z. Zhao, Y. Liu, M. Blumenstein, and J. Li, “Deep learning detection of anomalous patterns from bus trajectories for traffic insight analysis,” Knowledge-Based Systems, 217, p.106833, 2021.
- Rezaee, S.M. Rezakhani, M.R. Khosravi, and M.K. Moghimi, “A survey on deep learning-based real-time crowd anomaly detection for secure distributed video surveillance,” Personal and Ubiquitous Computing, pp.1-17, 2021.
- G. Narasimhan, and S. Kamath, “Dynamic video anomaly detection and localization using sparse denoising autoencoders,” Multimedia Tools and Applications, vol.77, no.11 , pp.13173-13195, 2018.
- Zhao, Z. Yi, S. Pan, Y. Zhao, Z. Zhao, F. Su, and B.Zhuang, “Unsupervised Traffic Anomaly Detection Using Trajectories,” In CVPR Workshops, pp. 133-140, 2019.
- Ahmed, ML. Wong, AK. Nandi, “Intelligent condition monitoring method for bearing faults from highly compressed measurements using sparse over-complete features,” Mechanical Systems and Signal Processing, 99 pp,459-77, 2018.
- S. Jang, “ANFIS: adaptive-network-based fuzzy inference system,” IEEE transactions on systems, man, and cybernetics, vol 23, no 3, pp.665-685, 1993.
- Zenati, CS. Foo, B. Lecouat, G. Manek, VR. Chandrasekhar. “Efficient gan-based anomaly detection,” arXiv preprint arXiv:1802.06222, 2018.
- C. Loy, T. Xiang, and S. Gong, “From local temporal correlation to global anomaly detection,” In ECCV, 2008.
- Xu, Y. Zhou, W. Lin, and H. Zha, “Unsupervised trajectory clustering via adaptive multi-kernel-based shrinkage,” In ICCV, 2015.
- Kingma, M. Welling, “Auto-encoding variational bayes,” arXiv preprint arXiv:1312.6114. 2013.
- Averbuch-Elor, N. Bar, D. Cohen-Or, “Border-Peeling Clustering,” IEEE transactions on pattern analysis and machine intelligence. Vol 42,no 7, pp.1791-7, 2019.
- Santhosh, DP. Dogra, PP. Roy, “Temporal unknown incremental clustering model for analysis of traffic surveillance videos,” IEEE Transactions on Intelligent Transportation Systems, vol 20, no 5, pp. 1762-73, 2018.
|