- Abdel-Monaim, M.F. (2011). Role of riboflavin and thiamine in induced resistance against charcoal rot disease of soybean. Egyptian Journal of Phytopathology39(1): 1-23. https://doi.org/21608/EJP.2011.158587.
- Ahn, I.P., Kim, S., & Lee, Y.H. (2005). Vitamin B1 functions as an activator of plant disease resistance. Plant Physiology138(3): 1505-1515. https://doi.org/10.1104/pp.104.058693.
- Ahn, I.P., Kim, S., Lee, Y.H., & Suh, S.C. (2007). Vitamin B1-induced priming is dependent on hydrogen peroxide and the NPR1 gene in Arabidopsis. Plant Physiology143(20): 838-848. https://doi.org/10.1104/pp.106.092627.
- Al-Hazmi, A.S., & TariqJaveed, M. (2016). Effects of different inoculum densities of Trichoderma harzianum and Trichoderma viride against Meloidogyne javanica on tomato. Saudi Journal of Biological Sciences 23(2): 288-292. https://doi.org/10.1016/j.sjbs.2015.04.007.
- Aryal, S.K., Davis, R.F., Stevenson, K.L., Timper, P., & Ji, P. (2011). Influence of infection of cotton by Rotylenchulus reniformis and Meloidogyne incognita on the production of enzymes involved in systemic acquired resistance. Journal of Nematology43(3-4): 152-159.
- Asensi-Fabado, M.A., & Munné-Bosch, S. (2010). Vitamins in plants: occurrence, biosynthesis and antioxidant function. Trends in Plant Science 15(10): 582-592. https://doi.org/10.1016/j.tplants.2010.07.003.
- Aver'Yanov, A.A., Lapikova, V.P., Nikolaev, O.N., & Stepanov, A.I. (2000). Active oxygen-associated control of rice blast disease by riboflavin and roseoflavin. Biokhimiia65(11): 1292-1298.
- Bernard, G.C., Egnin, M., & Bonsi, C. (2017). The Impact of Plant-Parasitic Nematodes on Agriculture and Methods of Control. Nematology-Concepts, Diagnosis and Control 1: 121-151. https://doi.org/10.5772/INTECHOPEN.68958.
- Boubakri, H., Chong, J., Poutaraud, A., Schmitt, C., Bertsch, C., Mliki, A., Masson, J.E., & Soustre-Gacougnolle, I. (2013). Riboflavin (Vitamin B2) induces defence responses and resistance to Plasmopara viticola in grapevine. European Journal of Plant Pathology 136(4): 837-855. https://doi.org/10.1007/s10658-013-0211-x.
- Bradford, Marion M. (1976). "A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding." Analytical biochemistry 72.1(2): 248-254. https://doi.org/1016/0003-2697(76)90527-3.
- Bridge, J., & Page, S.L.J. (1980). Estimation of root-knot nematode infestation levels on roots using a rating chart. International Journal of Pest Management 26(3): 296-298. https://doi.org/10.1080/09670878009414416.
- Chinnasri, B., Sipes, B.S., & Schmitt, D.P. (2006). Effects of inducers of systemic acquired resistance on reproduction of Meloidogyne javanica and Rotylenchulus reniformis in pineapple. Journal of Nematology38(3): 319. https://doi.org/17660/ActaHortic.2005.666.22.
- Dias, M.A., & Manuela Costa, M. (1983). Effect of low salt concentrations on nitrate reductase and peroxidase of sugar beet leaves. Journal of Experimental Botany 34(5): 537-543. https://doi.org/1093/jxb/34.5.537.
- Dina, S.S., Ibrahim, A.H., Nour El-Deen, A.E.K., & Fatma, A.M.M. (2013). Induction of systemic resistance in sugar-beet infected with meloidogyne incognita by humic acid, hydrogen peroxide, thiamine and two amino acids. Egypt Journal Agronematol12: 22-41.
- Dong, H., & Beer, S.V. (2000). Riboflavin induces disease resistance in plants by activating a novel signal transduction pathway. Phytopathology 90(8): 801-811. https://doi.org/10.1094/PHYTO.2000.90.8.801.
- FAOSTAT: http://www.fao.org/faostat/en/#data.
- Fatma, M.A., Khalil, A.E., El Deen, N.A., & Dina, S. (2014). Induction of systemic resistance in sugar-beet against root-knot nematode with commercial products. Journal of Plant Pathology & Microbiology 5(3): 37-43. https://doi.org/4172/2157-7471.1000236.
- Feyisa, B., Lencho, A., Selvaraj, T., & Getaneh, G. (2015). Evaluation of some botanicals and Trichoderma harzianum for the management of tomato root-knot nematode (Meloidogyne incognita (Kofoid and White) Chit Wood). Advances in Crop Science and Technology 4(1): 2-10. https://doi.org/4172/2329-8863.1000201.
- Ghareeb Y., Adss I.A., Bayoumi, S.R., & El-Habashy, D.E. (2019). The nematicidal potentiality of some algal extracts and their role in enhancement the tomato defense genes against root knot-nematodes. Egyptian Journal of Biological Pest Control29(1): 53-63.
- Gomez‐Vasquez, R.O.C.Í.O., Day, R., Buschmann, H., Randles, S., Beeching, J.R., & Cooper, R.M. (2004). Phenylpropanoids, phenylalanine ammonia lyase and peroxidases in elicitor‐challenged cassava (Manihot esculenta) suspension cells and leaves. Annuals of Botany 94(1): 87-97.
- Herrera-Parra, E., Ramos-Zapata, J., Cristóbal-Alejo, J., Tun-Suarez, J., & Reyes-Ramírez, A. (2018). Species of Trichoderma antagonistic to the root knot nematode (Meloidogyne incognita) in habanero peppers. FYTON 87: 7-13.
- Huang, W.K., Ji, H.L., Gheysen, G., & Kyndt, T. (2016). Thiamine‐induced priming against root‐knot nematode infection in rice involves lignification and hydrogen peroxide generation. Molecular Plant Pathology 17(4): 614-624. https://doi.org/10.1111/mpp.12316.
- Jansson, H.B., Jeyaprakash, A., & Zuckerman, B.M. (1985). Control of root-knot nematodes on tomato by the endoparasitic fungus Meria coniospora. Journal of Nematology17(3): 327-329.
- Kato, M., & Shimizu, S. (1987). Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves; phenolic-dependent peroxidative degradation. Canadian Journal of Botany 65(4): 729-735. https://doi.org/1139/b87-097.
- Kavari, M., Mahdikhani Moghadam, E., & Rouhani, H. (2014). Survey on chitinase production by several isolates of Trichoderama and its biological control effect on tomato root-knot nematode Meloidogyne javanica. Journal of Plant Protection29(1): 123-133.
- Kayani, M.Z., Sarwar, G., & Muhammad, S. (2001). Control of root-knot nematode (Meloidogyne incognita) on tomato plants by using root extracts of plants. Journal of Agriculture in the Tropics and Subtropics 102(2): 143-146. https://doi.org/10.30486/IJROWA.2021.1937252.1307.
- Leyva, M.O., Vicedo, B., Finiti, I., Flors, V., Del Amo, G., Real, M.D., García‐Agustín, P., & González‐Bosch, C. (2008). Preventive and post‐infection control of Botrytis cinerea in tomato plants by hexanoic acid. Plant Pathology 57(6): 1038-1046. https://doi.org/10.1111/j.1365-3059.2008.01891.x.
- Liu, H., Jiang, W., Bi, Y., & Luo, Y. (2005). Postharvest BTH treatment induces resistance of peach (Prunus persica cv. Jiubao) fruit to infection by Penicillium expansum and enhances activity of fruit defense mechanisms. Postharvest Biology and Technology 35(3): 263-269. https://doi.org/10.1016/j.postharvbio.2004.08.006.
- Malamy, J., Sanchez-Casas, P., Hennig, J., Guo, A., & Klessig, D.F. (1996). Dissection of the salicylic acid signaling pathway in tobacco. Molecular plant-microbe interactions: MPMI (USA). https://doi.org/4161/psb.4.8.9173.
- Navia, , Delgado, A., Viera, W., Báez, F., & Trevor, J. (2017). Application of Bio-Products in Ecuadorian Agriculture: Case Banana. International Journal of Clinical and Biological Sciences 2 (2): 37-43. https://doi.org/10.1371/journal.pone.0120384.
- Sahebani, N., & Hadavi, N. (2008). Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Soil Biology and Biochemistry 40(8): 2016-2020. https://doi.org/1016/j.soilbio.2008.03.011.
- Sahebani, N., Hadavi, N.S., & Zade, F.O. (2011). The effects of β-amino-butyric acid on resistance of cucumber against root-knot nematode, Meloidogyne javanica. Acta Physiologiae Plantarum 33(2):443-450. https://doi.org/10.1007/s11738-010-0564-0.
- Scalschi, L., Vicedo, B., Camañes, G., Fernandez‐Crespo, E., Lapeña, L., González‐Bosch, C., & García‐Agustín, P. (2013). Hexanoic acid is a resistance inducer that protects tomato plants against Pseudomonas syringae by priming the jasmonic acid and salicylic acid pathways. Molecular Plant Pathology 14(4): 342-355. https://doi.org/1111/mpp.12010.
- Sharon, E., Chet, I., Bar-Eyal, M., & Spiegel, Y. (2009). Biocontrol of root-knot nematodes by Trichoderma-modes of action. International Organisation for Biological and Integrated Control Bulletin 42: 159-163.
- Singleton, V.L., & Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture 16(3): 144-158.
- Szabó, M., Csepregi, K., Gálber, M., Virányi, F., & Fekete, C. (2012). Control plant-parasitic nematodes with Trichoderma species and nematode-trapping fungi: The role of chi18-5 and chi18-12 genes in nematode egg-parasitism. Biological Control 63(2): 121-128. https://doi.org/10.1016/j.biocontrol.2012.06.013.
- Szabó, M., Urbán, P., Virányi, F., Kredics, L., & Fekete, C. (2013). Comparative gene expression profiles of Trichoderma harzianum proteases during in vitro nematode egg-parasitism. Biological Control 67(3): 337-343. https://doi.org/10.1016/j.biocontrol.2013.09.002.
- Taheri, P., & Tarighi, S. (2010). Riboflavin induces resistance in rice against Rhizoctonia solani via jasmonate-mediated priming of phenylpropanoid pathway. Journal of Plant Physiology167(3): 201-208. https://doi.org/10.1016/j.jplph.2009.08.003.
- Vicedo, B., Flors, V., de la O Leyva, M., Finiti, I., Kravchuk, Z., Real, M.D., García-Agustín, P., & González-Bosch, C. (2009). Hexanoic acid-induced resistance against Botrytis cinerea in tomato plants. Molecular Plant-Microbe Interactions 22(11): 1455-1465. https://doi.org/doi.org/10.1094/MPMI-22-11-1455.
- Zhang, S., Yang, X., Sun, M., Sun, F., Deng, S., & Dong, H.(2009). Riboflavin‐induced priming for pathogen defense in Arabidopsis thaliana. Journal of Integrative Plant Biology 51(2): 167-174. https://doi.org/10.1111/j.1744-7909.2008.00763.x.
- Zhang, S., Gan, Y., & Xu, B.(2014). Efficacy of Trichoderma longibrachiatum in the control of Heterodera avenae. BioControl 59(3): 319-331. https://doi.org/10.3389/fpls.2017.01491.
|