- Lee, C., Kim, M., Kim, Y. J., Hong, N., Ryu, S., Kim, H. J., Kim, S., "Soft Robot Review", J. Control. Autom. Syst. Vol. 15, pp. 3–15. https://doi.org/10.1007/s12555-016-0462-3, (2017).
- George Thuruthel, T., Ansari, Y., Falotico, E., Laschi, C., "Control Strategies for Soft Robotic Manipulators: A Survey", Soft Robot. Vol. 5, pp. 149–163. https://doi.org/10.1089/soro.2017.0007, (2018).
- Bogue, R., "Artificial Muscles and Soft Gripping: A Review of Technologies and Applications", Rob. 39 , pp. 535–540. https://doi.org/10.1108/01439911211268642, (2012).
- Gorissen, B., Reynaerts, D., Konishi, S., Yoshida, K., Kim, J. W., De Volder, M., "Elastic Inflatable Actuators for Soft Robotic Applications", Adv. Mater. 29, https://doi.org/10.1002/adma.201604977, (2017).
- Miriyev, A., "A Focus on Soft Actuation", Actuators. 8, https://doi.org/10.3390/ACT8040074, (2019).
- Manti, M., Hassan, T., Passetti, G., D’Elia, N., Laschi, C., Cianchetti, M., "A Bioinspired Soft Robotic Gripper for Adaptable and Effective Grasping", Soft Robot. 2, 107–116. (2015).
- Mirvakili, S. M., Hunter, I. W., "Artificial Muscles: Mechanisms, Applications, and Challenges", Adv. Mater. 30. https://doi.org/10.1002/adma.201704407, (2018).
- Mirfakhrai, T., Madden, J. D. W., Baughman, R. H., "Polymer Artificial Muscles", Mater. Today. 10, pp. 30–38. https://doi.org/10.1016/S1369-7021(07)70048-2, (2007).
- Bar-Cohen, Y., "Electroactive Polymers as Artificial Muscles: A Review", Spacecr. Rockets. Vol. 39, pp. 822–827. https://doi.org/10.2514/2.3902, (2002).
- Meng, H., Li, G., "A Review of Stimuli-Responsive Shape Memory Polymer Composites", Polymer (Guildf). 54, Pp. 2199–2221. https://doi.org/10.1016/j.polymer.2013.02.023, (2013).
- Saga, N., Nagase, J., Saikawa, T., "Pneumatic Artificial Muscles Based on Biomechanical Characteristics of Human Muscles", Appl. Bionics Biomech. 3, Pp. 191–197. https://doi.org/10.1533/abbi.2006.0028, (2006).
- Tzou, H. S., Lee, H. J., Arnold, S. M., "Smart Materials, Precision Sensors/Actuators, Smart Structures, and Structronic Systems", Mech. Adv. Mater. Struct. 11, Pp. 367–393. (2004).
- Mondal, S., "Phase Change Materials for Smart Textiles - An Overview", Appl. Therm. Eng. 28, Pp. 1536–1550. https://doi.org/10.1016/j.applthermaleng.2007.08.009, (2008).
- Ogden, S., Klintberg, L., Thornell, G., Hjort, K., Bodén, R., "Review on Miniaturized Paraffin Phase Change Actuators, Valves, and Pumps", Microfluid. Nanofluidics. 17, Pp. 53–71. https://doi.org/10.1007/s10404-013-1289-3, (2014).
- Qiu, X., Li, W., Song, G., Chu, X., Tang, G., "Microencapsulated N-Octadecane with Different Methylmethacrylate-Based Copolymer Shells as Phase Change Materials for Thermal Energy Storage", Energy. 46, Pp. 188–199. https://doi.org/10.1016/j.energy.2012.08.037, (2012).
- Cui, Y., Liu, C., Hu, S., Yu, X., "The Experimental Exploration of Carbon Nanofiber and Carbon Nanotube Additives on Thermal Behavior of Phase Change Materials", Sol. Energy Mater. Sol. Cells. 95, Pp. 1208–1212. https://doi.org/10.1016/j.solmat.2011.01.021, (2011).
- Chellattoan, R., Yudhanto, A., Lubineau, G., "Low-Voltage-Driven Large-Amplitude Soft Actuators Based on Phase Transition", Soft Robot. 7, Pp. 688–699. https://doi.org/10.1089/soro.2019.0150, (2020).
- Kang, D. J., An, S., Yarin, A. L., Anand, S., "Programmable Soft Robotics Based on Nano-Textured Thermo-Responsive Actuators", Nanoscale. 11, Pp. 2065–2070. https://doi.org/10.1039/c8nr08215d, (2019).
- Miriyev, A., Xia, B., Joseph, J. C., Lipson, H., "Additive Manufacturing of Silicone Composites for Soft Actuation", 3D Print. Addit. Manuf. 6, Pp. 309–318. https://doi.org/10.1089/3dp.2019.0116, (2019).
- Miriyev, A., Caires, G., Lipson, H., "Functional Properties of Silicone/Ethanol Soft-Actuator Composites", Mater. Des. 145, Pp. 232–242. https://doi.org/10.1016/j.matdes.2018.02.057, (2018).
- Cartolano, M., Xia, B., Miriyev, A., Lipson, H., "Conductive Fabric Heaters for Heat-Activated Soft Actuators", Actuators. 8, https://doi.org/10.3390/act8010009, (2019).
- Xia, B., Miriyev, A., Trujillo, C., Chen, N., Cartolano, M., Vartak, S., Lipson, H., "Improving the Actuation Speed and Multi-Cyclic Actuation Characteristics of Silicone/Ethanol Soft Actuators", Actuators. 9. https://doi.org/10.3390/ACT9030062, (2020).
- Miriyev, A., Trujillo, C., Caires, G., Lipson, H., "Rejuvenation of Soft Material-Actuator", MRS Commun. 8, Pp. 556–561. https://doi.org/10.1557/mrc.2018.30, (2018).
- Otero, T. F., Sansiñena, J. M., "Soft and Wet Conducting Polymers for Artificial Muscles", Adv. Mater. 10, Pp. 491–494. https://doi.org/10.1002/(SICI)1521-4095(199804)10:6<491::AID-ADMA491>3.0.CO;2-Q, (1998).
- Bilodeau, R. A., Mohammadi Nasab, A., Shah, D. S., Kramer-Bottiglio, R., "Uniform Conductivity in Stretchable Silicones: Via Multiphase Inclusions", Soft Matter. 16, pp. 5827– 5839. https://doi.org/10.1039/d0sm00383b, (2020).
- Miriyev, A., Stack, K., Lipson, H., "Soft Material for Soft Actuators", Nat. Commun. 8. https://doi.org/10.1038/s41467-017-00685-3, (2017).
|