Akhiaei, M., Kharqani, M., Rahimi, M. and Sereshki, F., 2015. Hydrothermal alteration zones in Torud-Chahshirin belt, using various processing techniques of Aster images. Scientific Quarterly Journal, Geosciences, 24(94): 107–116. (in Persian with English abstract) https://doi.org/10.22071/gsj.2015.43263
Alimohammadi, M., Alirezaei, S. and Kontak, D.J., 2015. Application of ASTER data for exploration of porphyry copper deposits: A case study of Daraloo–Sarmeshk area, southern part of the Kerman copper belt, Iran. Ore Geology Reviews, 70(4): 290–304. https://doi.org/10.1016/j.oregeorev.2015.04.010
Ashrafpour, E., Alirezaei S. and Ansdell, K.M., 2009. Ore geology and fluid inclusion studies of Arghash gold prospect, southwest Neishabour, NE Iran. Scientific Quarterly Journal, Geosciences, 71(18): 129–136. (in Persian with English abstract) https://doi.org/10.22071/gsj.2010.57001
Ashrafpour, E. and Haghighi, E., 2012. Report on the geology and mineralization in north Pariz prospecting area, Sirjan, Kerman province. Pariz steel co., Kerman, 85 pp.
Atapour, H., 2007. Geochemical evolution and metallogeny of potassic igneous rocks in Dehaj-Sardoieh, Kerman Province, with emphasis on specific elements. Unpublished Ph.D. Thesis, Shahid Bahonar University, Kerman, Iran, 280 pp. (in Persian with English abstract)
Ayuso, R.A., Barton, M.D., Blakely, R.J., Bodnar, R.J., Dilles, J.H., Gray, Floyd, Graybeal, F.T., Mars, J.C., McPhee, D.K., Seal, R.R., Taylor, R.D. and Vikre, P.G., 2010. In: D.A. John (Editor) Porphyry copper deposit model: Chapter B in mineral deposit models for resource assessment: U.S. Geological Survey Scientific Investigations Report 2010–5070–B, Denver, 169 pp.
https://doi.org/10.3133/sir20105070B
Bakshieev, I.A., Prokof’ev, V.Y., Zaraisky, G.P., Chitalin, A.F., Yapaskurt, V., Nikolaev, Y.N., Tikhomirov, P.L., Nagornaya, E.V., Rogacheva, L.I., Gorelikova, N.V. and Kononov, O.V., 2012. Tourmaline as prospecting guide for the porphyry-style deposits. European Journal of Mineralogy, 24(6): 957–979. https://doi.org/10.1127/0935-1221/2012/0024-2241
Bodnar, R.J., 1993. Revised equation and table for determining the freezing point depression of H2O–NaCl solutions. Geochimica et Cosmochimica Acta, 57(3): 683–684. https://doi.org/10.1016/0016-7037(93)90378-A
Bodnar, R.J., Lecumberri-Sanchez P., Moncada, D. and Steele-MacInnis M., 2014. Fluid inclusions in hydrothermal ore deposits. In: H.D. Holland and K.K. Turekian (Editors), Treatise on Geochemistry. Oxford: Elsevier, pp. 119–142. https://doi.org/10.1016/B978-0-08-095975-7.01105-0
Bodnar, R.J., Reynolds, T.J. and Kuehn C.A., 1985. Fluid-inclusion systematics in epithermal systems. In: B.R. Berger and P.M. Bethke (Editors), Geology and Geochemistry of Epithermal Systems. Reviews in Economic Geology, pp. 73–97. https://doi.org/10.5382/Rev.02.05
Bove, D.J., Mast, M.A., Dalton, J.B., Wright, W.G. and Yager, D.B., 2004. Major Styles of Mineralization and Hydrothermal Alteration and Related Solid- and Aqueous-Phase Geochemical Signatures. In: S.E. Church, P. von Guerard and S.E. Finger (Editors), Integrated Investigations of Environmental Effects of Historical Mining in the Animas River Watershed, San Juan County, Colorado. U.S. Geological Survey, Professional Paper 1651, pp. 165–230. Retrieved June 05, 2021 from https://pubs.usgs.gov/pp/1651/downloads/Vol1_combinedChapters/vol1_chapE3.pdf
Cairncross, B. and Bahmann U., 2006. Minerals from the Goboboseb Mountains: Brandberg Region, Namibia. Rocks & Minerals, 81(6): 442–457. https://doi.org/10.3200/RMIN.81.6.442-457
Chang, Z., Hedenquist, J.W., White, N.C., Cooke, D.R., Roach, M., Deyell, C.L., Garcia, J., Jr., Gemmell, J.B., McKnight, S. and Cuison, L., 2011. Exploration tools for linked porphyry and epithermal deposits: Example from the Mankayan intrusion-centered Cu-Au district, Luzon, Philippines. Economic Geology, 106(8): 1365–1398. https://doi.org/10.2113/econgeo.106.8.1365
Chiu, H.-Y., Chung, S.L., Zarinkoub, M.H., Mohammadi, S.S., Khatib, M.M. and Iizuka, Y., 2013. Zircon U–Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos, 162–63: 70–87. https://doi.org/10.1016/j.lithos.2013.01.006
Corbett, G.J., 2009. Anatomy of porphyry-related Au-Cu-Ag-Mo mineralised systems: Some exploration implications. In: K. Camuti and D. Young (Editors) Northern Queensland Exploration and Mining 2009 and North Queensland Seismic and MT Workshop Extended Abstracts. Australian Institute of Geoscientists (AIG) Bulletin 49, pp. 33–46. Retrieved Jan. 12, 2021 from
https://www.aig.org.au/publication-shop/digital-aig-bulletin-no-49-northern-queensland-exploration-mining-2009/
Dimitrijevic, M.D., 1973. Geology of the Kerman region. Geological Survey of Iran, Tehran, Report Yu/52, 334 pp.
Dimitrijevic, M.D., Dimitrijevic, M.N., Djordjevic, M. and Voluvic, D., 1973. Geological map of Pariz, No. 7149, scale 1:100,000. Geological Survey of Iran, Tehran.
Ebrahimi, S., Alirezaei S. and Pan, Y., 2011. Geological setting, alteration, and fluid inclusion characteristics of Zaglic and Safikhanloo epithermal gold prospects, NW Iran. In: A.N., Sial, J.S., Bettencourt, C.P. De Campos and V.P. Ferreira (Editors), Granite-Related Ore Deposits. Geological Society, London, pp. 133–147. https://doi.org/10.1144/SP350.8
Ebrahimi, S., Alirezaei, S., Pan, Y. and Mohammadi, B., 2017. Geology, mineralogy and ore fluid characteristics of the Masjed Daghi gold bearing veins system, NW Iran. Journal of Economic Geology, 9(2): 561–586. (in Persian with English abstract) https://doi.org/10.22067/ECONG.V9I2.51493
Ebrahimi, S., Pan, Y., Alirezaei, S. and Mehrparto, M., 2009. Mineralogy and fluid inclusion studies of Sharafabad epithermal gold deposit, northwest Iran. Scientific Quarterly Journal, Geosciences, 71(18): 149-154. (in Persian with English abstract) https://doi.org/10.22071/gsj.2010.57004
Einali, M., Alirezaei, S., Bakker, R.J. and Mohammadzadeh, Z., 2015. Laser Raman Microspectroscopy of fluid inclusions and evolution of ore fluids in Baghkhoshk porphyry copper system, southern Urumieh- Dokhtar magmatic belt. Scientific Quarterly Journal, Geosciences, 97(25): 21–36. (in Persian with English abstract) https://doi.org/10.22071/gsj.2015.41349
Farhoudi, G., 1978. A comparison of Zagros geology to island arcs. The Journal of Geology, 86(3): 323–334.
https://doi.org/10.1086/649694
Ghorbani Kahrizsangi, M., Alirezaei, S. and Asadi Harooni, H., 2014. Physicochemical characteristics, sulfur isotope ratio, and source of ore fluids in Kalchueh Cu-Au deposit, Central Iran. Researches in Earth Sciences, 18(2): 75–96. (in Persian with English abstract) Retrieved Oct. 12, 2020 from http://esrj.sbu.ac.ir/article_95295.html
Guilbert, J.M. and Park, C.F. (Translated by Alirezaei S.), 2016. The Geology of Ore Deposits, Amirkabir Publisher, Tehran, 983 pp.
Haghighi, E., Alirezaei, S. and Ashrafpour, E., 2013. Mineralization, alteration, and ore fluid characteristics in the Cheshmeh Hafez base and precious metals deposits, Torud-Chahshirin belt, North-Central Iran. Scientific Quarterly Journal, Geosciences, 88(22): 99–110. (in Persian with English abstract) http://dx.doi.org/10.22071/gsj.2013.53682
Hassanzadeh, J., 1993. Metallogenic and tectono-magmatic events in the SE Sector of the Cenozoic active continental margin of Iran (Shahr-e-Babak area, Kerman province). Unpublished Ph.D. Thesis, University of California, Los Angeles, U.S.A, 204 pp.
Hedenquist, J.W., Arribas, A. and Gozales-Urien, E., 2000. Exploration for epithermal gold deposits. In: S.G. Hagemann and P.E. Brown (Editors), Reviews in Economic Geology. Society of Economic Geologists, Special Publication 13, Littleton, pp. 245–277. https://doi.org/10.5382/Rev.13.07
Hedenquist, J.W. and Taran, Y., 2013. Modeling the formation of advanced argillic lithocaps: volcanic vapor condensation above porphyry intrusions. Economic Geology, 108(7): 1523–1540. https://doi.org/10.2113/econgeo.108.7.1523
Hosseini, M.R., Hassanzadeh, J., Alirezaei, S., Sun, W. and Li, C.Y., 2017. Age revision of the Neotethyan arc migration into the southeast Urumieh-Dokhtar belt of Iran: Geochemistry and U–Pb zircon geochronology. Lithos, 284–285(1): 296–309.
https://doi.org/10.1016/j.lithos.2017.03.012
Kazemi Mehrnia, A., 2010. Characteristics of the leached cap and evolution of the supergene-enriched blanket in the NW Kerman belt porphyry Cu-Mo deposits. Unpublished Ph.D. thesis, Shahid Beheshti University, Tehran, Iran, 310 pp. (in Persian with English abstract)
Kazemi Mehrnia, A., Rasa, A., Alirezaei, S., Asadi Haroni, H. and Karami, J., 2011. Alteration mapping in Seridun porphyry copper deposit using infrared spectrometry (PIMA), ASTER satellite images and XRD. Scientific Quarterly Journal, Geosciences, 79(20): 3–12. (in Persian with English abstract) https://doi.org/10.22071/gsj.2018.54987
Lambrecht, G. and Diamond, L.W., 2014. Morphological ripening of fluid inclusions and coupled zone-refining in quartz crystals revealed by cathodoluminescence imaging: Implications for CL-petrography, fluid inclusion analysis and trace-element geothermometry. Geochimica et Cosmochimica Acta, 141(15): 381–406. https://doi.org/10.1016/j.gca.2014.06.036
Lecumberri-Sanchez, P., Steele-MacInnis, M. and Bodnar, R.J., 2012. A numerical model to estimate trapping conditions of fluid inclusions that homogenize by halite disappearance. Geochimica et Cosmochimica Acta 92(1): 14–22. https://doi.org/10.1016/j.gca.2012.05.044
McInnes, I.A., Evans, N.J., Fu, F.Q. and Garwin, S., 2005. Application of thermochronology to hydrothermal ore deposits. Reviews in Mineralogy and Geochemistry, 58(1): 467–498. https://doi.org/10.2138/rmg.2005.58.18
Moncada, D., Mutchler, S., Nieto, A., Reynolds, T.J., Rimstidt, J.D. and Bodnar, R.J., 2012. Mineral textures and fluid inclusion petrography of the epithermal Ag–Au deposits at Guanajuato, Mexico: Application to exploration. Journal of Geochemical Exploration, 114: 20–35. https://doi.org/10.1016/j.gexplo.2011.12.001
Naden, J., Kilias, S.P., Leng, M.J., Cheliotis, I. and Shepherd, T.J., 2003. Do fluid inclusions preserve δ18O values of hydrothermal fluids in epithermal systems over geological time? Evidence from paleo- and modern geothermal systems, Milos Island, Aegean Sea. Chemical Geology, 197(1–4): 143–159.
https://doi.org/10.1016/S0009-2541(02)00289-9
Nazarinia, A., Mortazavi M., Arvin, M. and Poosti, M., 2019. Thermobarometry of Mamzar granitoid body and its tectonomagmatic implication. Iranian Journal of Crystallography and Mineralogy, 27(1): 122–134. (in Persian with English abstract) https://doi.org/10.29252/ijcm.27.1.123
Noorizadeh, M., Moradian, A., Ahmadipour, H., Ghassemi, M.R. and Santos, J.F., 2018. Petrology, geochemistry and tectonomagmatic evolution of Hezar igneous complex (Rayen-South of Kerman-Iran): the first description of an arc remnant of the Neotethyan subduction zone. Journal of Sciences Islamic Republic of Iran, 29(4): 341–359. https://doi.org/10.22059/jsciences.2018.67446
Ohmoto, H. and Goldhaber, M.B., 1997. Sulfur and Carbon Isotopes. In: H.L. Barnes (Editor), Geochemistry of Hydrothermal Ore Deposits, John Wiley and Sons, New York, pp. 517–611.
Ramezani, Z., 1995. The Meideh silicic zone in Meideh area, north Pariz, Kerman: Mineralogy and conditions of formation. Unpublished M.Sc. Thesis, Shahid Beheshti University, Tehran, Iran, 203 pp. (in Persian with English abstract)
Roedder, E., 1984. Fluid Inclusions. Reviews in Mineralogy, vol. 12, Mineralogical Society of America, 646 pp.
Shafiei, B., Haschke, M. and Shahabpour, J., 2009. Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Mineralium Deposita, 44(3): 265–283.
https://doi.org/10.1007/S00126-008-0216-0
Shahabpour, J., 2005. Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz. Journal of Asian Earth Sciences, 24(4): 405–417. https://doi.org/10.1016/j.jseaes.2003.11.007
Shahabpour, J., 2015. Economic Geology. Shahid Bahonar University Press, Kerman, Iran, 548 pp. (in Persian)
Sillitoe, R.H., 2010. Porphyry Copper Systems. Economic Geology, 105(1): 3–41. https://doi.org/10.2113/gsecongeo.105.1.3
Sillitoe, R.H., 2015. Epithermal paleosurfaces. Mineralium Deposita, 50(7): 767–793. https://doi.org/10.1007/s00126-015-0614-z
Steele-MacInnis, M., Bodnar, R.J. and Nadan, J. 2011. Numerical model to determine the composition of H2O-NaCl-Cacl2 fluid inclusions based on microthermometric and microanalytical data, Geochimica et Cosmochimica Acta. 75(1): 21–40. https://doi.org/10.1016/j.gca.2010.10.002
Stöcklin, J., 1974. Possible ancient continental margins in Iran, In: C.A. Burk and C.L. Drake (Editors), The Geology of Continental Margins. Springer, Berlin, pp. 837–887. https://doi.org/10.1007/978-3-662-01141-6_64
Sun, W., Huang, R.F., Li, H., Hu, Y., Zhang, C., Sun, S., Zhang, L., Ding, X., Li, C., Zartman, R.E. and Ling, M., 2015. Porphyry deposits and oxidized magmas. Ore Geology Reviews, 65(1): 97–131. https://doi.org/10.1016/j.oregeorev.2014.09.004
Taghipour, B. and Makizadeh, M.A., 2009. The origin of hydrothermal alterations using stable isotopes in Takestan area (Lower Tarom). Journal of Economic Geology, 1(1): 101–115. (in Persian with English abstract) https://doi.org/10.22067/ECONG.V1I1.3683
Taylor, H.P., 1997. Oxygen and Hydrogen Isotope Relationships in Hydrothermal Mineral Deposits. In: H.L. Barnes (Editor), Geochemistry of Hydrothermal Ore Deposits. John Wiley & Sons, New York, NY, pp. 229–302.
Van den Kerkhof, A.M. and Hein, U.F., 2001. Fluid inclusion petrography. Lithos, 55(1–4): 27–47. https://doi.org/10.1016/S0024-4937(00)00037-2
Wilkinson, J.J., 2001. Fluid inclusions in hydrothermal ore deposits. Lithos, 55(1–4): 229–272.
https://doi.org/10.1016/S0024-4937(00)00047-5