تعداد نشریات | 48 |
تعداد شمارهها | 1,605 |
تعداد مقالات | 17,590 |
تعداد مشاهده مقاله | 4,534,210 |
تعداد دریافت فایل اصل مقاله | 2,091,749 |
زمین دما-فشارسنجی سنگ های گابروئیدی میزبان کانه زایی اکسیدی آهن– تیتانیوم در منطقه درگز (کمپلکس افیولیتی کهنوج) | ||
زمین شناسی اقتصادی | ||
مقالات آماده انتشار، پذیرفته شده، انتشار آنلاین از تاریخ 28 آذر 1400 اصل مقاله (3 MB) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22067/econg.2021.69934.1016 | ||
نویسندگان | ||
مجید قاسمی سیانی؛ حامد ابراهیمی فرد ![]() | ||
گروه زمینشیمی، دانشکده علوم زمین، دانشگاه خوارزمی، تهران، ایران | ||
چکیده | ||
سنگهای گابروئیدی منطقۀ درگز با طیف سنگ شناسی فروگابرو تا پیروکسن-هورنبلند گابروی درشت بلور، پیروکسن- هورنبلند گابرو ریزبلور و هورنبلند گابرو واقع در کمپلکس افیولیتی کهنوج، میزبان کانه زایی اکسید آهن- تیتانیوم هستند. اولیوینها ترکیب کریزولیت تا هیالوسیدریت دارند. ارتوپیروکسنها و کلینوپیروکسنهای بررسیشده، از نوع انستاتیت و اوژیت دیوپسیدی تا دیوپسید اوژیتی است. آمفیبولهای سنگهای گابروئیدی و دایکهای دیابازی با ترکیب هورنبلند گابرو، منیزیم بالایی داشته و از نوع کلسیک بوده و عمدتاً از نوع پارگازیت، منیزیوهاستینگزیت و منیزیوهورنبلند هستند. ترکیب پلاژیوکلازها از بیتونیت در فروگابرو و پیروکسن – هورنبلند گابرو تا آندزین در هورنبلند گابرو و دایکهای دیابازی متغیر است. مطالعات زمیندما-فشارسنجی برپایۀ ترکیب کلینوپیروکسنها و آمفیبولها، دماهای 750 تا 1258 (زمیندماسنج پیروکسن) و 776 تا 884 درجۀ سانتیگراد (زمین دماسنج پلاژیوکلاز و پلاژیوکلاز – هورنبلند) را به ترتیب در فشارهای 5/2 و 6 کیلوبار برای سنگهای گابروئیدی نشان داد. با استفاده از این دماسنجی ها، دماهای 700 تا 1145 (زمیندماسنج پیروکسن) و 911 تا 948 درجۀ سانتیگراد (زمیندماسنج پلاژیوکلاز – هورنبلند و هورنبلند) به ترتیب در فشارهای 5/2 و 6 کیلوبار برای دایکهای دیابازی تخمین زده شد. نتایج حاصل از زمیندما-فشارسنجی سنگهای گابروئیدی و دایکهای دیابازی میزبان کانه زایی اکسیدی آهن – تیتانیوم منطقۀ درگز، با ژرفای جایگیری و تبلور ماگما (34/15 تا 20/21 کیلومتری)، در بخش فوقانی گوشتۀ بالایی مطابقت دارد. مقادیر دما و فوگاسیتۀ بالای اکسیژن به دست آمده برای سنگهای گابروئیدی، نشاندهندۀ شرایط اکسیدان در پیدایش این سنگها به همراه کانه زایی همزادی (ارتوماگمایی) اکسید آهن- تیتانیوم در حین سردشدن و تفریق ماگما و شکلگیری این توده ها در یک حوضه کششی پشت کمانی است. | ||
کلیدواژهها | ||
شیمی کانی؛ زمین دما- فشارسنجی؛ سنگ های گابروئیدی؛ اکسید آهن – تیتانیوم؛ درگز؛ کمپلکس افیولیتی کهنوج | ||
مراجع | ||
Abd El-Rahman, Y., Helmy, H. M., Shibata, T., Yoshikawa, M., Arai, S. and Tamura, A., 2012. Mineral chemistry of the Neoproterozoic Alaskan-type Akarem Intrusion with special emphasis on amphibole: Implications for the pluton origin and evolution of subduction-related magma. Lithos, 155: 410–425. https://doi.org/10.1016/j.lithos.2012.09.015 Aoki, K. I. and Shiba, I., 1993. Pyroxenes from lherzolite inclusions of Itinome-gata, Japan. Lithos, 6(1): 41–51. https://doi.org/10.1016/0024-4937(73)90078_9 Anderson, J.L. and Smith, D.R., 1995. The effect of temperature and oxygen fugacity on Al-in-hornblende barometry. American Mineralogist, 80 (5-6): 549–559. https://doi.org/10.2138/am.1995-5-615 Anderson, J.L., 1996. Status of thermobarometry in granitic batholiths. Transaction of the Royal Society of Edinburg: Earth Sciences, 87 (1-2): 125–138. Retrieved October 10, 2021 from https//:www.scirp.org Arvin, M., Babaei, A. A., Ghadami, Gh., Dargahi, S. and Shakerardekani, A.R., 2005. The origin of the Kahnuj ophiolitic complex, SE of Iran, Constraints from whole rock and mineral chemistry of the Bande-Zeyarat gabbroic complex. Ofioliti, 30 (1): 1–14. Retrieved October 10, 2021 from https//www.scholar.google.com Barbero, E., Delavari, M., Dolati, A., Vahedi, L., Langone, A., Marroni, M. and Saccani, E., 2020. Early Cretaceous Plume–Ridge Interaction Recorded in the Band-e-Zeyarat Ophiolite (North Makran, Iran): New Constraints from Petrological, Mineral Chemistry, and Geochronological Data. Minerals, 10(12): 1100. https://doi.org/10.3390/min10121100 Barclay, J. and Carmichael, I. S. E., 2004. A hornblende basalt from western Mexico: water-saturated phase relations constrain a pressure–temperature window of eruptibility. Journal of Petrology, 45(3): 485–506. https://doi.org/10.1093/petrology/egg091 Beccaluva, L., Bianchini, G., Bonadiman, C., Siena, F. and Vaccaro, C., 2004. Coexisting anorogenic and subduction-related metasomatism in mantle xenoliths from the Betic Cordillera (southern Spain). Lithos, 75(1-2): 67–87. https://doi.org/10.1016/j.lithos.2003.12.015 Bertrand, P. and Mercier, J. C., 1985. The mutual solubility of coexisting ortho- and Clinopyroxene: toward and absolute geothermometry for natural system? Earth and Planetary Science Letters, 76(1–2): 109–122. https://doi.org/10.1016/0012-821X(85)earpscilett.90152-9 Bishop, F. C., 1980. The distribution of Fe2+ and Mg between coexisting illmenite and pyroxene with application to geothermometry. American Journal of Sciences, 280(1): 46–77. https://doi.org/10.2475/ajs.280.1.46 Bonev, N. and Stampfli, G., 2005. Compositional diversity of the Evros ophiolite, Thrace, northeastern Greece: field occurrences, preliminary petrologic and geochemical data on plutonic sequence and tectonic implications, 31–34. Retrieved October 10, 2021 from https://scholar.google.com Blundy, J. D., and Holland, T. J., 1990. Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer. Contributions to Mineralogy and Petrology, 104(2): 208–224. https://doi.org/10.1007/BF00306444 Burg, J. P., Dolati, A., Bernoulli, D. and Smit, J., 2013. Structural style of the Makran Tertiary accretionary complex in SE-Iran. In: K. H. Al hosani, F. Roure, and R. Ellison (Editors), Lithosphere dynamics and sedimentary basins: The Arabian Plate and analogues. Springer, Berlin, pp. 239–259. https://doi.org/10.1007/978-3-642-30609-9_12 Burg, J. P., 2018. Geology of the onshore Makran accretionary wedge: Synthesis and tectonic interpretation. Earth-Science Reviews, 185, 1210–1231. https://doi.org/10.1016/j.earscirev.2018.09.011 Coltorti, M., Bonadiman, C., Faccini, B., Grégoire, M., O'Reilly, S. Y. and Powell, W., 2007. Amphiboles from suprasubduction and intraplate lithospheric mantle. Lithos, 99(1-2): 68–84. https://doi.org/10.1016/j.lithos.2007.05.009 Deer, W.A., Howie, R.A. and Zussman, J., 2013. An introduction to the rock forming minerals. Longman Scientific and Technical, London, 506 pp. Retrieved October 10, 2021 from https//:edisciplinas.usp.br Desmons, J. and Beccaluva, L., 1983. Mid-ocean ridge and island-arc affinities in ophiolites from Iran: palaeographic implications: complementary reference. Chemical Geology, 39(1-2): 39–63. https://doi.org/10.1016/0009-2541(83)90071_2 Dorani, M., Arvin, M., Oberhänsli, R. and Dargahi, S., 2017. PT evolution of metapelites from the Bajgan complex in the Makran accretionary prism, south eastern Iran. Geochemistry, 77(3):459–475. https://doi.org/10.1016/j.chemer.2017.07.004 Elthon, D., Stewart, M., and Ross, D. K., 1992. Compositional trends of minerals in oceanic cumulates. Journal of Geophysical Research: Solid Earth, 97(B11): 15189–15199. https://doi.org/10.1029/92JB01187 Enami, M., Suzuki, K., Liou, J. G. and Bird, D. K., 1993. Al– Fe3+ and F– OH substitutions in titanite and constrains on their P–T dependence. European Journal of Mineralogy, 5(2): 231–291. https://doi.org/10.1127/ejm.5.2.0219 Ernst, W. G. and Liu, J., 1998. Experimental phase-equilibrium study of Al-and Ti-contents of calcic amphibole in MORB—A semiquantitative thermobarometer. American mineralogist, 83(9-10): 952–969. https://doi.org/10.2138/am-1998-9-1004 Esmaeili, R., Xiao, W., Ebrahimi, M., Zhang, J. E., Zhang, Z., Abd El-Rahman, Y. and Aouizerat, A., 2020. Makran ophiolitic basalts (SE Iran) record Late Cretaceous Neotethys plume-ridge interaction. International Geology Review, 62(13-14): 1677–1697. https://doi.org/10.1080/00206814.2019.1658232 Ewart, A., 1979. A review of the mineralogy and chemistry of Tertiary-Recent dacitic, latitic, rhyolitic, and related salic volcanic rocks. Developments in Petrology, 6: 13–121. https://doi.org/10.1016/B978-0-444-41765-7.50007-1 Fanka, A., Tsunogae, T., Daorerk, V., Tsutsumi, Y., Takamura, Y., Endo, T. and Sutthirat, C., 2016. Petrochemistry and mineral chemistry of Late Permian hornblendite and hornblende gabbro from the Wang Nam Khiao area, Nakhon Ratchasima, Thailand: indication of Palaeo-Tethyan subduction. Journal of Asian Earth Sciences, 130: 239–255. https://doi.org/10.1016/j.jseaes.2016.11.018 Fischer, T. P. and Marty, B., 2005. Volatile abundances in the sub-arc mantle: insights from volcanic and hydrothermal gas discharges. Journal of Volcanology and Geothermal Research, 140(1–3): 205–216. https://doi.org/10.1016/j.jvolgeores.2004.07.022 Furhman, M. L. and Lindsley, D. H., 1988. Ternary-feldspar modeling and thermometry. American Mineralogist, 73(3–4): 201–215. Retrieved October 10, 2021 from https://pubs.geoscienceworld.org Ghadami, Gh., 1998. Petrology and geochemistry of the Kahnuj ophiolitic gabbroid rocks. MScThesis, Shahid Bahonar University, Kerman, Iran, 145 p (in Persian). Ghasemi Siani M., Mehrabi B., Karimi Shahraki B. and Kheirabadi A., 2018. Geology, petrography and geochemistry of ultramafic-mafic rocks and associated mineralization at Dargaz anomaly (Kahnuj OphioliticComplex).Petrology,34(9):139-162(inPersian).http://dx.doi.org/10.22108/ijp.2018.111638.1089 Ghasemi Siani, M., Mehrabi, B., Neubauer, F., Cao, S. and Lentz, D. R., 2021a. Geochronology, geochemistry, and origin of plagiogranitic rocks and related granitic dikes in the Dar Gaz district, Kahnuj ophiolite complex, SE Iran: Analysis of their petrogenesis in a back-arc tectonic setting. Lithos, 380: 105832. https://doi.org/10.1016/j.lithos.2020.105832 Ghasemi Siani, M., Mehrabi, B., Neubauer, F., Cao, S. 2021b. Trace element geochemistry of zircons from the Kahnouj ophiolite complex: implications for petrogenesis and geodynamic setting. Arabian Journal of Geosciences, 14(14): 1-20. https://doi.org/10.1007/s12517-021-07575-5 Ghazi A. M., Hassanipak A. A., Mahoney J.J. and Duncan R. A., 2004. Geochemical characteristics, 40Ar- 39Ar ages and original tectonic setting of the Band-e-Zeyarat/Dar Anar ophiolite, Makran accretionary prism, S.E. Iran. Tectonophysics, 393(1–4): 175–196. https://doi.org/10.1016/j.tecto.2004.07.035 Ghent, E. D., Nicholls, J., Simony, P. S., Sevigny, J. H. and Stout, M. Z., 1991. Hornblende geobarometry of the Nelson Batholith, southeastern British Columbia: tectonic implications. Canadian Journal of Earth Sciences, 28(12): 1982–1991. https://doi.org/10.1139/e91-180 Giacomini, F., Tiepolo, M., Dallai, L. and Ghezzo, C., 2007. On the onset and evolution of the Ross-orogeny magmatism in North Victoria Land—Antarctica. Chemical Geology, 240(1–2): 103–128. https://doi.org/10.1016/j.chemgeo.2007.02.005 Hammarstrom, J. M. and Zen, E. A., 1986. Aluminum in hornblende: an empirical igneous geobarometer. American Mineralogist, 71(11–12): 1297–1313. Retrieved October 10, 2021 from https://pubs.geoscienceworld.org Hassanipak, A. A., Ghazi, A. M. and Wampler, J. M., 1996. Rare earth element characteristics and K- Ar ages of the Band Ziarat ophiolite complex, southeastern Iran. Canadian Journal of Earth Sciences, 33(11):1534– 1542. https://doi.org/10.1139/e96-116 Hawthorne, F. C., Oberti, R., Harlow, G. E., Maresch, W. V., Martin, R. F., Schumacher, J. C. and Welch, M. D., 2012. Nomenclature of the amphibole supergroup. American Mineralogist, 97(11–12): 2031–2048. https://doi.org/10.2138/am.2012.4276 Hebert, R., 1982. Petrography and mineralogy of oceanic peridotites and gabbros: some comparisons with ophiolite examples. Ofioliti, 7(2–3): 299-324. Retrieved October 10, 2021 from https://pascal-francis.inist.fr Hebert, R., Constantin, M. and Robinson, P. T., 1991. Primary mineralogy of Leg 118 gabbroic rocks and their place in the spectrum of oceanic mafic igneous rocks. In: Proceeding of the ocean Drilling Program. Scientific Results, 118: 3–20. Retrieved October 10, 2021 from https://scholar.google.com Holland, T., Blundy, J., 1994. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contributions to Mineralogy and Petrology, 116: 433–447. https://doi.org/10.1007/BF00310910 Hollister, L. S., Grissom, G. C., Peters, E. K., Stowell, H. H. and Sisson, V. B., 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. American Mineralogist, 72(3–4): 231–239. Retrieved October 10, 2021 from https://pubs.geoscienceworld.org Hossain, I., Tsunogae, T. and Rajesh, H. M., 2009. Geothermobarometry and fluid inclusions of dioritic rocks in Bangladesh: Implications for emplacement depth and exhumation rate. Journal of Asian Earth Sciences, 34(6): 731–739. https://doi.org/10.1016/j.jseaes.2008.10.010 Huaimin X., Shuwen D., Ping, J., 2006. Mineral chemistry’ geochemistry and U-Pb SHRIMP zircon data of the Yangxin monzonitic intrusive in the foreland of the Dabie orogen sci-ence in China", Earth Sciences, 49: 684–695. https://doi.org/10.1007/s11430-006-0684-y Humphreys, M. C., Cooper, G. F., Zhang, J., Loewen, M., Kent, A. J., Macpherson, C. G. and Davidson, J. P. 2019. Unravelling the complexity of magma plumbing at Mount St. Helens: a new trace element partitioning scheme for amphibole. Contributions to Mineralogy and Petrology, 174(1): 1–15. https://doi.org/10.1007/s00410-018-1543-5 Hunziker, D., 2014. Magmatic and metamorphic history of the North Makran ophiolites and blueschists (SE Iran): Influence of Fe3+/Fe2+ ratios in blueschist facies minerals on geothermobarometric calculations. Ph.D. Thesis, University of Zurich, Zurich, Switzerland, 384 pp. Retrieved October 10, 2021 from https://www.research-collection.ethz.ch/handle Hunziker, D., Burg, J. P., Bouilhol, P. and von Quadt, A., 2015. Jurassic rifting at the Eurasian Tethys margin: Geochemical and geochronological constraints from granitoids of North Makran, southeastern Iran. Tectonics, 34(3): 571–593. https://doi.org/10.1002/2014TC003768 Hynes, A., 1982. A comparison of amphiboles from medium-and low-pressure metabasites. Contributions to Mineralogy and Petrology, 81(2): 119–125. https://doi.org/10.1007/BF00372049 Jacamon, F. and Larsen, R. B., 2009. Trace element evolution of quartz in the charnockitic Kleivan granite, SW-Norway: The Ge/Ti ratio of quartz as an index of igneous differentiation. Lithos, 107(3–4): 281–291. https://doi.org/10.1016/j.lithos.2008.10.016 Johnson, M. C. and Rutherford, M. J., 1989. Experimental calibration of the aluminum-in-hornblende geobarometer with application to Long Valley caldera (California) volcanic rocks. Geology, 17(9): 837–841. https://doi.org/10.1130/0091-7613(1989)017<0837:ECOTAI>2.3.CO;2 Kananian A., 2001. Petrology and geochemistry of Kahnuj ophiolite complex. Ph.D thesis, Tarbiat Modares University, Tehran, Iran, 241 p (in Persian). Kananian A., Juteau T., Bellon H., Darvishzadeh A., Sabzehi M., Whitechurch H. and Ricou L. E., 2001. The ophiolite massif of Kahnuj (western Makran, southern Iran). new geological and geochronological data. Sciences de la Terre et des planètes/Earth and Planetary Sciences, 332(9):543–552. https://doi.org/10.1016/S1251-8050(01)01574-9 Karimi Shahraki, B., Ghasemi Siani, M. and Gholizadeh K., 2019. Geothermometry and oxygen fugacity of iron-titanium oxide minerals in Dargaz anomaly, southeast of Kahnuj. Kharazmi Earth Sciences, 5(1): 79–98 (in Persian). Retrieved October 10, 2021 from https://10.29252/gnf.5.1.79 Kelemen P., Whitehead J. A., Aharonov E. and Joordahl K. A., 1995. Experiments on flow focusing in soluble porous media, with applications to melt extraction from the mantle. Journal of Geophysics Research, 100(B1): 475–496. https://doi.org/10.1029/94JB02544 Kelemen, P. B., Rilling, J. L., Parmentier, E. M., Mehl, L. and Hacker, B. R., 2003. Thermal structure due to solid-state flow in the mantle wedge beneath arcs. Geophysical Monograph-American Geophysical Union, 138, 293–311. https://doi.org/10.1029/138GM13 Kretz, R., 1994. Metamorphic crystallization. John Wiley and Sons Ltd, New York, USA, 507 pp. Retrieved October 10, 2021 from https://www.academia.edu Lindsley, D.H., 1983. Pyroxene thermometry. American mineralogist, 68: 477–493. Retrieved October 10, 2021 from https://pubs.geoscienceworld.org Locock, A. J., 2014. An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Computers and Geosciences, 62: 1–11. https://doi.org/10.1016/j.cageo.2013.09.011 Mandal, A., Ray, A., Debnath, M. and Paul, S. P., 2012. Petrology, geochemistry of hornblende gabbro and associated dolerite dike of Paharpur, Puruliya, West Bengal: Implication for petrogenetic process and tectonic setting. Journal of Earth System Science, 121(3): 793–812. https://doi.org/10.1007/s12040-012-0195-5 Meurer, W. P., and Claeson, D. T., 2002. Evolution of crystallizing interstitial liquid in an arc-related cumulate determined by LA ICP-MS mapping of a large amphibole oikocryst. Journal of Petrology, 43(4): 607–629. https://doi.org/10.1093/petrology/43.4.607 McCall, G. J. H. and Kidd, R. G. W., 1982. The Makran, Southeastern Iran: the anatomy of a convergent plate margin active from Cretaceous to Present. Geological Society, London, Special Publications, 10(1): 387–397. https://doi.org/10.1144/GSL.SP.1982.010.01.26 McCall, G. J. H., 1985. Explanatory text of the Minab quadrangle map 1:250000. Geological Survey of Iran, Report No. J13 (in Persian). McCall, G. J. H., 1997. The geotectonic history of the Makran and adjacent areas of the southern Iran. Journal of Asian Earth Sciences, 15(6): 517–531. https://doi.org/10.1016/S0743-9547(97)00032-9 Molina, J. F., Scarrow, J. H., Montero, P. G. and Bea, F., 2009. High-Ti amphibole as a petrogenetic indicator of magma chemistry: evidence for mildly alkalic-hybrid melts during evolution of Variscan basic–ultrabasic magmatism of Central Iberia. Contributions to Mineralogy and Petrology, 158(1): 69–98. https://doi.org/10.1007/s00410-008-0371-4 Molina, J. F., Moreno, J. A., Castro, A., Rodríguez, C. and Fershtater, G. B., 2015. Calcic amphibole thermobarometry in metamorphic and igneous rocks: New calibrations based on plagioclase/amphibole Al-Si partitioning and amphibole/liquid Mg partitioning. Lithos, 232: 286–305. https://doi.org/10.1016/j.lithos.2015.06.027 Morimoto, N., 1988. Nomenclature of pyroxenes. Canadian Mineralogist, 27: 143–156. https://doi.org/10.1007/BF01226262 Moslempour, M. E., Khalatbari-Jafari, M., Ghaderi, M., Yousefi, H. and Shahdadi, S., 2015. Petrology, geochemistry and tectonics of the extrusive sequence of Fannuj-Maskutan ophiolite, Southeastern Iran. Journal of the Geological Society of India, 85(5): 604–618. https://doi.org/10.1007/s12594-015-0255-y Miyashiro, A., 1974. Volcanic rock series in island arcs and active continental margins. American Journal of Science, 274(4): 321–355. https://doi.org/10.2475/ajs.274.4.321 Mutch, E. J. F., Blundy, J. D., Tattitch, B. C., Cooper, F. J. and Brooker, R. A., 2016. An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende geobarometer. Contributions to Mineralogy and Petrology, 171(10): 1–27. https://doi.org/10.1007/s00410-016-1298-9 Nekvasil, H., 1992. Ternary feldspar crystallization in high-temperature felsic magmas. American Mineralogist, 77(5-6): 592–604. Retrieved October 10, 2021 from https://pubs.geoscienceworld.org Nisbet, E. G. and Pearce, J. A., 1977. Clinopyroxene composition in mafic lavas from different tectonic settings. Contributions to Mineralogy and Petrology, 63(2): 149-160. https://doi.org/10.1007/BF00398776 Paragon-Contech Consulting Engineers, 1985. Explanatory text of Minab Map 1:250000. Geological survey of Iran (in Persian). Pearce, J.A., Lipart, S.J. and Roberts, S., 1984. Characteristic and tectonic setting of Supra-Subduction zone ophiolites. Geological Society Special Publication (London), 16: 77–94. https://doi.org/10.1144/GSL.SP.1984.016.01.06 Petrini, K. and Podladchikov, Y., 2000. Lithospheric pressure-depth relationship in compressive regions of thickened crust. Journal of Metamorphic Geology, 18(1): 67–77. https://doi.org/10.1046/j.1525-1314.2000.00240.x Putirka, K.D., 2016. Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. American Mineralogist, 101(4): 841–858. https://doi.org/10.2138/am-2016-5506 Rampone, E., Hofmann, A. W. and Raczek, I., 1998. Isotopic contrasts within the Internal Liguride ophiolite (N. Italy): the lack of a genetic mantle–crust link. Earth and Planetary Science Letters, 163(1-4):175–189. https://doi.org/10.1016/S0012-821X(98)00185-X Rajabzadeh, M. A., Ghorbani M and Saadati M., 2011. Mineralization study of titanium in Kahnouj ophiolitic complex based on petrological, mineralogical and geochemical data, south of Kerman province. Petrology, 7(2): 21–38 (in Persian). Retrieved October 10, from https://ijp.ui.ac.ir Richards, J. P., 2003. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Economic Geology, 98(8): 1515–1533. https://doi.org/10.2113/gsecongeo.98.8.1515 Ridolfi, F., Renzulli, A. and Puerini, M., 2010. Stability and chemical equilibrium of amphibole in calc- alkaline magmas: an overview, new thermobarometric formulations and application to subduction – related volcanoes. Contributions to Mineralogy and Petrology, 160(1): 45–66. https://doi.org/10.1007/s00410-009-0465-7 Ridolfi, F. and Renzulli, A., 2012. Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1,130° C and 2.2 GPa. Contributions to Mineralogy and Petrology, 163(5): 877–895. https://doi.org/10.1007/s00410-011-0704-6 Sepidbar, F., Lucci, F., Biabangard, H., Zaki Khedr, M. and Jiantang, P., 2020. Geochemistry and tectonic significance of the Fannuj-Maskutan SSZ-type ophiolite (Inner Makran, SE Iran). International Geology Review, 62(16): 2077–2104. https://doi.org/10.1080/00206814.2020.1753118 Saccani, E., Dilek, Y. and Photiades, A., 2018. Time-progressive mantle-melt evolution and magma production in a Tethyan marginal sea: A case study of the Albanide-Hellenide ophiolites. Lithosphere, 10(1): 35–53. https://doi.org/10.1130/L602.1 Schmidt, M. W., 1992. Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology, 110(2-3): 304–310. https://doi.org/10.1007/BF00310745 Shafaii Moghadam, H. and Stern, R. J., 2015. Ophiolites of Iran: Keys to understanding the tectonic evolution of SW Asia:(II) Mesozoic ophiolites. Journal of Asian Earth Sciences, 100: 31–59. https://doi.org/10.1016/j.jseaes.2014.12.016 Scaillet, B. and Evans, B. W., 1999. The 15 June 1991 eruption of Mount Pinatubo. I. Phase equilibria and pre-eruption P–T–f O2–f H2O conditions of the dacite magma. Journal of Petrology, 40(3): 381–411. https://doi.org/10.1093/petroj/40.3.381 Simakin, A., Zakrevskaya, O. and Salova, T., 2012. Novel amphibole geo-barometer with application to mafic xenoliths. Earth Science Research, 1(2): 82 - 97. http://dx.doi.org/10.5539/esr.v1n2p82 Soesoo, A., 1997. A multivariate statistical analysis of clinopyroxene composition: Empirical coordinates for the crystallisation PT‐estimations. Geological Society of Sweden (Geologiska Foreningen), 119(1): 55–60. https://doi.org/10.1080/11035899709546454 Stein, E., and Dietl, C., 2001. Hornblende thermobarometry of granitoids from the Central Odenwald (Germany) and their implications for the geotectonic development of the Odenwald. Mineralogy and Petrology, 72(1-3): 185–207. https://doi.org/10.1007/s007100170033 Tamayo Jr, R. A., 1998. Petrology and mineral chemistry of a back-arc upper mantle suite: Example from the Camarines Norte Ophiolite complex, South Luzon. Journal of the Geological Society of the Philippines, 51: 1–23. Retrieved October 10, 2021 from https://ci.nii.ac.jp Vyhnal, C. R., McSween, H. Y. and Speer, J. A., 1991. Hornblende chemistry in southern Appalachian granitoids: implications for aluminum hornblende thermobarometry and magmatic epidote stability. American Mineralogist, 76(1-2):176–188. Retrieved October 10, 2021 from https://pubs.geoscienceworld.org Wallace, P. J., 2005. Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. Journal of Volcanology and Geothermal Research, 140(1–3): 217–240. https://doi.org/10.1016/j.jvolgeores.2004.07.023 Wan, B., Xiao, W., Windley, B. F. and Yuan, C., 2013. Permian hornblende gabbros in the Chinese Altai from a subduction-related hydrous parent magma, not from the Tarim mantle plume. Lithosphere, 5(3), 290–299. https://doi.org/10.1130/L261.1 Whitney, D. L. and Evans, B. W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1): 185–187. https://doi.org/10.2138/am.2010.3371 Wones, D. R., 1981. Mafic silicates as indicators of intensive variables in granitic magmas. Mining Geology, 31(168): 191–212. https://doi.org/10.11456/shigenchishitsu1951.31.191 Wones, D. R., 1989. Significance of the assemblage titanite+ magnetite+ quartz in granitic rocks. American Mineralogist, 74(7-8): 744–749. Retrieved October 10, 2021 from https://pubs.geoscienceworld.org Xie, Y. W. and Zhang Y. Q., 1990. Peculiarities and genetic significance of hornblende from granite in the Hengduansan region. Acta Mineral Sin, 10: 35–45. Retrieved Ocober 10, 2021 from https://en.cnki.com Yan, S. and Niu, H, C., 2014. Petrography and geochemistry of the Wuling amphibole gabbro and its implication for iron ore metallization. Acta Geologica Sinica‐English Edition, 2(88): 397–398. https://doi.org/10.1111/1755-6724.12372_25 Yan, S., Shan, Q., Niu, H. C., Yang, W. B., Li, N. B., Zeng, L. J. and Jiang, Y. H., 2015. Petrology and geochemistry of late Carboniferous hornblende gabbro from the Awulale Mountains, western Tianshan (NW China): Implication for an arc–nascent back-arc environment. Journal of Asian Earth Sciences, 113, 218–237. https://doi.org/10.1016/j.jseaes.2015.01.016 Yang, D. G., Sun, D. Y., Gou, J. and Hou, X. G., 2018. Petrogenesis and tectonic setting of Carboniferous hornblende gabbros of the northern Great Xing'an Range, NE China: Constraints from geochronology, geochemistry, mineral chemistry, and zircon Hf isotopes. Geological Journal, 53(5): 2084–2098. https://doi.org/10.1002/gj.3035 Yavaz, F. and Döner, Z., 2017. WinAmptb: A Windows program for calcific amphibole thermobarometry. Periodico di Mineralogia, 86(2): 135–167. https://doi.org/10.2451/2017PM710 Yoder, H.S. and Tilley, C.E., 1962. Origin of Basaltic Magma: an experimental Study of Natural and synthetic rocks systems. Journal of Petrology, 3(3): 342–532. https://doi.org/10.1093/petrology/3.3.342 Zhang, S. H., Zhao, Y. and Song, B., 2006. Hornblende thermobarometry of the Carboniferous granitoids from the Inner Mongolia Paleo-uplift: implications for the tectonic evolution of the northern margin of North China block. Mineralogy and Petrology, 87(1): 123–141. https://doi.org/10.1007/s00710-005-0116-2 | ||
آمار تعداد مشاهده مقاله: 165 تعداد دریافت فایل اصل مقاله: 51 |