- Albawi, S., Mohammed, T. A., & Al-Zawi, S. (2017). Understanding of a convolutional neural network. Pages 1-6. 2017 International Conference on Engineering and Technology (ICET): IEEE. https://doi.org/1109/ICEngTechnol.2017.8308186
- Alzadjali, A., Alali, M. H., Sivakumar, A. N. V., Deogun, J. S., Scott, S., Schnable, J. C., & Shi, Y. (2021). Maize Tassel Detection from UAV Imagery Using Deep Learning. Frontiers in Robotics and AI. https://doi.org/10.3389/frobt.2021.600410
- Bisong, E. (2019). Building machine learning and deep learning models on Google Cloud Platform. Springer.
- Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934. https://doi.org/10.48550/arXiv.2004.10934
- Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. Computer Science, 7, e623. https://doi.org/10.7717/peerj-cs.623
- Dillon, J. V., Langmore, I., Tran, D., Brevdo, E., Vasudevan, S., Moore, D., Patton, B., Alemi, A., Hoffman, M., & Saurous, R. A. (2017). Tensorflow distributions. arXiv preprint arXiv: 1711.10604. https://doi.org/10.48550/arXiv.1711.10604
- Elfwing, S., Uchibe, E., & Doya, K. (2018). Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Neural Networks, 107, 3-11. https://doi.org/10.1016/j.neunet.2017.12.012
- Farhadi, A., & Redmon, J. (2018). Yolov3: An incremental improvement. Pages 1804-2767. Computer Vision and Pattern Recognition: Springer Berlin/Heidelberg, Germany. https://doi.org/10.48550/arXiv.1804.02767
- Ghosal, S., Zheng, B., Chapman, S. C., Potgieter, A. B., Jordan, D. R., Wang, X., Singh, A. K., Singh, A., Hirafuji, M., & Ninomiya, S. (2019). A weakly supervised deep learning framework for sorghum head detection and counting. Plant Phenomics https://doi.org/10.34133/2019/1525874
- Gómez-Flores, W., Garza-Saldaña, J. J., & Varela-Fuentes, S. E. (2019). Detection of huanglongbing disease based on intensity-invariant texture analysis of images in the visible spectrum. Computers and Electronics in Agriculture, 162, 825-835. https://doi.org/10.1016/j.compag.2019.05.032
- Habib, A. F., Kim, E. M., & Kim, C. J. (2007). New methodologies for true orthophoto generation. Photogrammetric Engineering & Remote Sensing, 73, 25-36.
- Hawkins, D. M. (2004). The problem of overfitting. Journal of Chemical Information and Computer Sciences, 44, 1-12. https://doi.org/10.1021/ci0342472
- He, K., Zhang, X., Ren, S., & Sun, J. (2015). Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37, 1904-1916. https://doi.org/10.1109/TPAMI.2015.2389824
- Howard, A., Sandler, M., Chu, G., Chen, L. C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., & Vasudevan, V. (2019). Searching for mobilenetv3. Pages 1314-1324. Proceedings of the IEEE/CVF International Conference on Computer Vision.
- Jocher, G., et al. (2020). Yolov5. https://github.com/ultralytics/yolov5
- Lempitsky, V., & Zisserman, A. (2010). Learning to count objects in images. Advances in Neural Information Processing Systems, 23, 1324-1332.
- Leung, H., & Haykin, S. (1991). The complex backpropagation algorithm. IEEE Transactions on Signal Processing, 39, 2101-2104. https://doi.org/10.1109/78.134446
- Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., & Belongie, S. (2017). Feature pyramid networks for object detection. Pages 2117-2125. Proceedings of the IEEE conference on computer vision and pattern recognition.
- Liu, S., Qi, L., Qin, H., Shi, J., & Jia, J. (2018). Path aggregation network for instance segmentation. Pages 8759-8768. Proceedings of the IEEE conference on computer vision and pattern recognition.
- Liu, Y., Cen, C., Che, Y., Ke, R., Ma, Y., & Ma, Y. (2020). Detection of maize tassels from UAV RGB imagery with faster R-CNN. Remote Sensing, 12, 338. https://doi.org/10.3390/rs12020338
- Long, X., Deng, K., Wang, G., Zhang, Y., Dang, Q., Gao, Y., Shen, H., Ren, J., Han, S., & Ding, E. (2020). PP-YOLO: An effective and efficient implementation of object detector. arXiv preprint arXiv:2007.12099. https://doi.org/10.48550/arXiv.2007.12099
- Lu, H., & Cao, Z. (2020). Tasselnetv2+: A fast implementation for high-throughput plant counting from high-resolution RGB imagery. Frontiers in Plant Science, 11, 1929. https://doi.org/10.3389/fpls.2020.541960
- Lu, H., Cao, Z., Xiao, Y., Zhuang, B., & Shen, C. (2017). TasselNet: counting maize tassels in the wild via local counts regression network. Plant Methods, 13, 1-17. https://doi.org/10.1186/s13007-017-0224-0
- Ongsulee, P. (2017). Artificial intelligence, machine learning and deep learning. Pages 1-6. 2017 15th International Conference on ICT and Knowledge Engineering (ICT&KE): IEEE.
- Parihar, C., Jat, S., Singh, A., Kumar, R. S., Hooda, K., GK, C., & Singh, D. (2011). Maize production technologies in India.
- Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., & Antiga, L. (2019). Pytorch: An imperative style, high-performance deep learning library. Advances in Neural Information Processing Systems, 32, 8026-8037.
- Pourreza, A., Lee, W. S., Etxeberria, E., & Banerjee, A. (2015). An evaluation of a vision-based sensor performance in Huanglongbing disease identification. Biosystems Engineering, 130, 13-22. https://doi.org/10.1016/j.biosystemseng.2014.11.013
- Quan, L., Feng, H., Lv, Y., Wang, Q., Zhang, C., Liu, J., & Yuan, Z. (2019). Maize seedling detection under different growth stages and complex field environments based on an improved Faster R–CNN. Biosystems Engineering, 184, 1-23. https://doi.org/10.1016/j.biosystemseng.2019.05.002
- Redmon, J., & Farhadi, A. (2017). YOLO9000: better, faster, stronger. Pages 7263-7271. Proceedings of the IEEE conference on computer vision and pattern recognition.
- Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. Pages 779-788. Proceedings of the IEEE conference on computer vision and pattern recognition.
- Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., & Savarese, S. (2019). Generalized intersection over union: A metric and a loss for bounding box regression. Pages 658-666. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
- Shi, W., Caballero, J., Huszár, F., Totz, J., Aitken, A. P., Bishop, R., Rueckert, D., & Wang, Z. (2016). Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. Pages 1874-1883. Proceedings of the IEEE conference on computer vision and pattern recognition.
- Sokolova, M., Japkowicz, N., & Szpakowicz, S. (2006). Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation. Pages 1015-1021. Australasian joint conference on artificial intelligence: Springer.
- Tagne, A., Feujio, T., & Sonna, C. (2008). Essential oil and plant extracts as potential substitutes to synthetic fungicides in the control of fungi. Pages 12-15. International Conference Diversifying crop protection.
- Tompson, J., Goroshin, R., Jain, A., LeCun, Y., & Bregler, C. (2015). Efficient object localization using convolutional networks. Pages 648-656. Proceedings of the IEEE conference on computer vision and pattern recognition.
- Ubbens, J., Cieslak, M., Prusinkiewicz, P., & Stavness, I. (2018). The use of plant models in deep learning: an application to leaf counting in rosette plants. Plant methods, 14, 1-10. https://doi.org/10.1186/s13007-018-0273-z
- Wang, C. Y., Liao, H. Y. M., Wu, Y. H., Chen, P. Y., Hsieh, J. W., & Yeh, I. H. (2020). CSPNet: A new backbone that can enhance learning capability of CNN. Pages 390-391. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops.
- Xiong, H., Cao, Z., Lu, H., Madec, S., Liu, L., & Shen, C. (2019). TasselNetv2: in-field counting of wheat spikes with context-augmented local regression networks. Plant Methods, 15, 1-14. https://doi.org/10.1186/s13007-019-0537-2
- Zhu, M. (2004). Recall, precision and average precision. Department of Statistics and Actuarial Science, University of Waterloo, Waterloo 2: 6.
- Zou, H., Lu, H., Li, Y., Liu, L., & Cao, Z. (2020). Maize tassels detection: a benchmark of the state of the art. Plant Methods, 16, 1-15. https://doi.org/10.1186/s13007-020-00651-z
|