- Aroca, R., Vernieri, P., Irigoyen, J.J., Sancher-Diaz, M., Tognoni, F., & Pardossi, A. (2003). Involvement of abscisic acid in leaf and root of maize (Zea mays) in avoiding chilling-induced water stress. Plant Sciences 165: 671–679. https://doi.org/10.1016/S0168-9452(03)00257-7
- Bates, L.S., Waldren, R.P., & Teare, I.D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil 39(1): 205-207. https://doi.org/1007/BF00018060.
- (2021). FAOSTAT, agricultural database. http://apps.FAO.Org.
- Gao, Y., Liu, W., Wang, X., Yang, L., Han, S., Chen, S., & Qiang, S. (2018). Comparative phytotoxicity of usnic acid, salicylic acid, cinnamic acid and benzoic acid on photosynthetic apparatus of Chlamydomonas reinhardtii. Plant Physiology and Biochemistry128: 1-12. https://doi.org/1016/j.plaphy.2018.04.037.
- Hussain, H.A., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S.A., Men, S., & Wang, L. (2018). Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Frontiers in Plant Science9: 393. https://doi.org/10.3389/fpls.2018.00393.
- Karadağ, B., & Yücel, N. C. (2017). Cinnamic acid and fish flour affect wheat phenolic acids and flavonoid compounds, lipid peroxidation, proline levels under salt stress. Acta Biologica Hungarica68(4): 388-397. https://doi.org/1556/018.68.2017.4.5.
- Korkmaz, A., Korkmaz, Y., & Demirkiran, A.R. (2010). Enhancing chilling stress tolerance of pepper seedlings by exogenous application of 5-aminolevulinic acid. Environmental and Experimental Botany 67: 495–501. https://doi.org/1016/j.envexpbot.2009.07.009.
- Kumar, S.P., & Kumar, C.V. (2014). Impact of cinnamic acid on physiological and anatomical changes in maize plants (Zea mays) grown under salinity stress. Journal of Stress Physiology & Biochemistry10(2): 1-13.
- Lee, S.H., Singh, A.P., Chung, G.C., Kim, Y.S., & Kong, I.B. (2002). Chilling root temperature causes rapid ultrastructural changes in cortical cells of cucumber (Cucumis sativus) root tips. Journal of Experimental Botany 53(378): 2225-2237. https://doi.org/10.1093/jxb/erf071.
- Li, Q., Yu, B., Gao, Y., Dai, A.H., & Bai, J.G. (2011). Cinnamic acid pretreatment mitigates chilling stress of cucumber leaves through altering antioxidant enzyme activity. Journal of Plant Physiology168(9): 927-934. https://doi.org/1016/j.jplph.2010.11.025.
- Liang, S.M., Kuang, J.F., Ji, S.J., Chen, Q.F., Deng, W., Min, T., & Lu, W.J. (2020). The membrane lipid metabolism in horticultural products suffering chilling injury. Food Quality and Safety4(1): 9-14. https://doi.org/1093/fqsafe/fyaa001.
- Lin, C.Y., Chung, H.H., Kuo, C.T., & Yiu, J.C. (2020). Exogenous cinnamic acid alleviates salinity-induced stress in sweet pepper (Capsicum annuum) seedlings. New Zealand Journal of Crop and Horticultural Science48(3): 164-182. https://doi.org/10.1080/01140671.2020.1765814.
- Liu, J.J., Lin, S.H., Xu, P.L., Wang, X.J., & Bai, J.G. (2009). Effects of exogenous silicon on the activities of antioxidant enzymes and lipid peroxidation in chilling-stressed cucumber leaves. Agricultural Sciences in China 8(9): 1075-1086. https://doi.org/1016/S1671-2927(08)60315-6.
- Lutts, S., Kinet, J.M., & Bouharmont, J. (1995). Changes in plant response to NaCl during development of rice (Oryza sativa) varieties differing in salinity resistance. Journal of Experimental Botany46(12): 1843-1852. https://doi.org/10.1093/jxb/46.12.1843.
- Milic, B.L., Dijilas, S.M., & Canadanovic-Brunet, J.M. (1998). Antioxidative activity of phenolic compounds on metal-ion breakdown of lipid peroxidation system. Food Chemistry 61: 443–447. https://doi.org/1016/S0308-8146(97)00126-X.
- Mohagheghian, E., & Ehsan Pour, A. (2021). Effect of Cinnamic acid on the activity of phenylalanine ammonialyase (PAL) and tyrosine ammonialyase (TAL) enzymes and some physiological characteristics of tobacco plant (Nicotiana rustica) under salinity stress in vitro calture. Journal of Cell & Tissue 12(2): 88-102. https://doi.org/10.52547/JCT.12.2.88.
- Parkash, V., & Singh, S. (2020). A review on potential plant-based water stress indicators for vegetable crops. Sustainability 12(10): 3945. https://doi.org/10.3390/su12103945.
- Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M., & Zheng, B. (2019). Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules24(13): 1-22. https://doi.org/10.3390/molecules24132452.
- Singh, P.K., Chaturvedi, V.K., & Singh H.B. (2011). Cross talk signaling: an emerging defense strategy in plants. Current Science100(3): 288-289.
- Singh, P.K., Singh, R., & Singh, S. (2013). Cinnamic acid induced changes in reactive oxygen species scavenging enzymes and protein profile in maize (Zea mays) plants grown under salt stress. Physiology and Molecular Biology of Plants19(1): 53-59. https://doi.org/10.1007/s12298-012-0126-6.
- Singleton, V.L., & Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture16(3): 144-158.
- Stewart, R.R., & Bewley, J.D. (1980). Lipid peroxidation associated with accelerated aging of soybean axes. Plant Physiology65(2): 245-248. https://doi.org/1104/pp.65.2.245.
- Strain, H.H., & Svec, W.A. (1966). Extraction, separation, estimation and isolation of the chlorophylls. The Chlorophylls1: 22-66. https://doi.org/1016/B978-1-4832-3289-8.50008-4.
- Sun, W.J., Nie, Y.X., Gao, Y., Dai, A.H., & Bai, J.G. (2012). Exogenous cinnamic acid regulates antioxidant enzyme activity and reduces lipid peroxidation in drought-stressed cucumber leaves. Acta Physiologiae Plantarum34(2): 641-655. https://doi.org/1007/s11738-011-0865-y.
- Trovato, M., Forlani, G., Signorelli, S., & Funck, D. (2019). Proline metabolism and its functions in development and stress tolerance. In Osmoprotectant-mediated abiotic stress tolerance in plants. Springer, Cham. https://doi.org/1007/978-3-030-27423-8-2.
- Verstraeten, S.V., Keen, C.L., Schmitz, H.H., Fraga, C.G., & Oteiza, P.L. (2003). Flavan-3-ols and procyanidins protect liposomes against lipid oxidation and disruption of the bilayer structure. Free Radical Biology and Medicine 34: 84–92. https://doi.org/1016/s0891-5849(02)01185-1.
- Wang, C.Y. (1985). Modification of chilling susceptibility in seedlings of cucumber and zucchini squash by the bio regulator paclobutrazol (PP333). Scientia Horticulturae26(4): 293-298. https://doi.org/1016/0304-4238(85)90013-5.
- Wang, X., Wang, H., Wu, F., & Liu, B. (2007). Effects of cinnamic acid on the physiological characteristics of cucumber seedlings under salt stress. Frontiers of Agriculture in China1(1): 58-61. https://doi.org/1007/s11703-007-0010-2.
- Xu, P.L., Guo, Y.K., Bai, J.G., Shang, L., & Wang, X.J. (2008). Effects of long‐term chilling on ultrastructure and antioxidant activity in leaves of two cucumber cultivars under low light. Physiologia Plantarum132(4): 467-478. https://doi.org/1111/j.1399-3054.2007.01036.x.
- Ye, S.F., Zhou, Y.H., Sun, Y., Zou, L.Y., & Yu, J.Q. (2006). Cinnamic acid causes oxidative stress in cucumber roots, and promotes incidence of FusariumEnvironmental and Experimental Botany 56(3): 255-262. https://doi.org/10.1016/j.envexpbot.2005.02.010.
- Yu, J.Q., & Matsui, Y. (1997). Effects of root exudates of cucumber (Cucumis sativus) and allelochemicals on ion uptake by cucumber seedlings. Journal of Chemical Ecology23(3): 817-827. https://doi.org/1023/B:JOEC.0000006413.98507.55.
- Zhou, M.Q., Shen, C., Wu, L.H., Tang, K.X., & Lin, J. (2011). CBF-dependent signaling pathway: a key responder to low temperature stress in plants. Critical Reviews in Biotechnology31(2): 186-192. https://doi.org/3109/07388551.2010.505910.
|