[1] Liddy, E. D., "Natural language processing", 2001.
[2] Nadkarni, P. M., Ohno-Machado, L., and Chapman, W. W., "Natural language processing: an introduction", Journal of the American Medical Informatics Association, vol. 18 No, 5, pp. 544-551, 2011.
[3] Jurafsky, D., and James, H., "Speech and language processing an introduction to natural language processing", computational linguistics, and speech, 2000.
[4] Sakaguchi, K., and Nagata, R., "Phrase structure annotation and parsing for learner English. Information and Media Technologies", vol. 12, pp. 316-339, 2017.
[5] Khatun, A., and Hoque, M. M., "Statistical parsing of Bangla sentences by CYK algorithm", International Conference on Electrical, Computer and Communication Engineering,, pp. 655-661, 2017.
[6] Nivre, J., "Dependency grammar and dependency parsing", MSI report, pp. 1-32, 2005.
[7] Zhang, X., Cheng, J., and Lapata, M., "Dependency parsing as head selection", arXiv preprint arXiv:1606.01280, 2016.
[8] Grella, M., "Notes About a More Aware Dependency Parser", arXiv preprint arXiv:1507.05630, 2015.
[9] Falavarjani, S. A. M., and Ghassem-Sani, G., "Advantages of dependency parsing for free word order natural languages", International Conference on Current Trends in Theory and Practice of Informatics, January 24, 2015, pp. 511-518, 2015.
[10] Dyer, C., Ballesteros, M., Ling, W., Matthews, A., Smith, NA., "Transition-based dependency parsing with stack long short-term memory", arXiv preprint arXiv:1505.08075, 2015.
[11] Kübler, S., McDonald, R., and Nivre, J., "Dependency parsing", Synthesis Lectures on Human Language Technologies, vol. 1, pp. 1-127, 2009.
[12] Plank, B., and Van Noord, G., "Grammar-driven versus data-driven: which parsing system is more affected by domain shifts?", Proceedings of the 2010 Workshop on NLP and Linguistics: Finding the common ground, pp. 25-33, 2010.
[13] Khallash, M., Hadian, A., and Minaei-Bidgoli, B., "An empirical study on the effect of morphological and lexical features in Persian dependency parsing", Proceedings of the Fourth Workshop on Statistical Parsing of Morphologically-Rich Languages. pp 97-107, 2013.
[14] McDonald, R., Crammer, K., and Pereira, F. C., "Spanning tree methods for discriminative training of dependency parsers", Technical Reports (CIS), pp. 1-55, 2006.
[15] Estiri, A., Kahani, M., Hoseini, M., and Asgarian, E., "Designing Persian language parser tool", International Conference on Asian Language Processing, 2012.
[16] Seraji, M., Bernd, B., and Nivre, J., "ParsPer: A dependency parser for Persian", International Conference on Dependency Linguistics (DepLing 2015), August 24-26, 2015, Uppsala, Sweden, pp. 300-309, 2015.
[17] Nivre, J., Hall, J., and Nilsson, J., "Maltparser: A data-driven parser-generator for dependency parsing", Proceedings of Language Resources and Evaluation Conference, pp. 2216-2219, 2006.
[18] McDonald, R., Pereira, F., Ribarov, K., and Hajič, J., "Non-projective dependency parsing using spanning tree algorithms", Proceedings of the conference on Human Language Technology and Empirical Methods in Natural Language Processing, pp. 523-530, 2005.
[19] Bohnet, B., and Kuhn, J., "The best of both worlds: a graph-based completion model for transition-based parsers", Proceedings of the 13th Conference of the European Chapter of the Association for Computational Linguistics, pp. 77-87, 2012.
[20] Bohnet, B., Nivre, J., "A transition-based system for joint part-of-speech tagging and labeled non-projective dependency parsing", Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 1455-1465, 2012.
[21] Martins, A. F., Smith, N. A., Xing, E. P., Aguiar, P. M., Figueiredo, M. A., "Turbo parsers: dependency parsing by approximate variational inference", Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pp. 34-44, 2012.
[22] Seraji, M., Megyesi, B., and Nivre, J., "Dependency parsers for Persian", 24th International Conference on Computational Linguistics, 8-15 pp. 35-44, 2012.
[23] Lazemi, S., Ebrahimpour-Komleh, H., "Feature engineering in Persian dependency parser", Journal of AI and Data Mining, vol. 7 No.30, pp. 467-474, 2018.
[24] Shamsfard, M., "Challenges and open problems in Persian text processing", Proceedings of LTC, vol. 11, pp.65-69, 2011.
[25] Rasooli, M. S., Kouhestani, M., and Moloodi, A., "Development of a Persian syntactic dependency treebank", Proceedings of the 2013 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pp. 306-314, 2013.
[26] Seraji, M., Jahani, C., Megyesi, B., and Nivre, J., "A Persian treebank with Stanford typed dependencies", Proceedings of Language Resources and Evaluation Conference, Reykjavik, Iceland, pp. 796-801, 2014.
[27] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R., "Dropout: a simple way to prevent neural networks from overfitting", The journal of machine learning research, vol. 15, No. 1, pp. 1929-1958, 2014.
[28] Grave, E., Bojanowski, P., Gupta, P., Joulin, A., and Mikolov, T., "Learning word vectors for 157 languages. ", arXiv preprint arXiv:1802.06893, 2018.
[29] Sarabi, Z., Mahyar, H., and Farhoodi, M., "ParsiPardaz: Persian language processing toolkit", Computer and Knowledge Engineering, pp. 73-79, IEEE, 2013.
[30] Seraji, M., Megyesi, B., and Nivre, J., "A basic language resource kit for Persian", Eight International Conference on Language Resources and Evaluation, pp. 2245-2252, 2012.