[1] Guo, L., Nian, X., Pan, H., "Leader-following consensus of multi-agent system with diffusion", Asian J. Control, vol.16 (1), pp. 188–197, (2014).
[2] Ye, Z., Hu, S., Yu, J., "Adaptive clustering algorithm for community detection in complex networks", Phys. Rev. vol. 78(4), (2008).
[3] Fortunato, S., Castellano, C., "Community structure in graphs", Computational Complexity. Springer; pp. 490–512, (2012).
[4] Girvan, M., Newman, M., "Community structure in social and biological networks", Proc. Natl. Acad. Sci. vol. 99(12), pp. 7821–7826, (2002).
[6] Newman, M., "Modularity and community structure in networks", Proc. Natl. Acad. Sci, vol. 103(23), pp.8577–8582, (2006).
[7] Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z., Wagner, D., "On modularity clustering", IEEE Trans. Knowl. Data Eng. Vol. 20 (2), pp. 172–188. https://doi.org/10.1109/TKDE.2007.190689, (2008).
[8] Li, T., Lei, L., Bhattacharyya Sh., Berge, K., Sarkar, P., Bickel, P., Levina, E., "Hierarchical Community Detection by Recursive Partitioning", Journal of the American Statistical Association, Published online, (2020). https://doi.org/10.1080/01621459.2020.1833888.
[9] Ahuja, M., "Problem domains in complex networks", IOSR Journal of Computer Engineering (IOSR-JCE). vol. 18(5), pp. 65-68, (2016).
[12] Liu, J., Zhong, W., Jiao, L., "A multi-agent evolutionary algorithm for combinatorial optimization problems", IEEE Trans. Syst. Man Cybern, vol. 40 (1), pp. 229–240. https://doi.org/10.1109/TSMCB.2009.2025775, (2010).
[13] Liu, J., Zhong, W., Jiao, L., "A multi-agent evolutionary algorithm for constraint satisfaction problems", IEEE Trans. Syst. Man Cybern. vol. 36 (1), pp. 54–73, (2006). https://doi.org/10.1109/TSMCB.2005.852980.
[14] Naeni L., Berretta, R., Moscato, P., "MA-Net: A reliable memetic algorithm for community detection by modularity optimization", In Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems. Springer, pp. 311–323, (2015). https://doi.org/10.1007/978-3-319-13359-1_25.
[16] Shang, R., Bai, J., Jiao, L., Jin, C., "Community detection based on modularity and an improved genetic algorithm", Phys. Stat. Mech. Appl, vol. 39 (2), pp. 1215–1231, (2013). https://doi.org/10.1016/j.physa.2012.11.003.
[18] Mirsaleh, M, Meybodi, M., "A Michigan memetic algorithm for solving the community detection problem in a complex network", Neurocomputing, vol. 21(4), pp. 535–545, (2016).
[19] Shi, C., Wang, Y., Wu, B., Zhong, C., "A new genetic algorithm for community detection", in International Conference on Complex Sciences, vol. 1298–1309, (2009).
[20] Pizzuti, C., "A multi-objective genetic algorithm to find communities in complex networks", IEEE Trans. Evol. Comput. vol. 16(3), pp. 418–430, (2012).
[21] Gong, M., Ma, L., Zhang, Q., Jiao, L., "Community detection in networks using a multi-objective evolutionary algorithm with decomposition", Physica A, vol. 391(15), pp. 4050–4060, (2012).
[22] Gong, M., Chen, X., Ma, L., Zhang, Q., Jiao, L., "Identification of multi-resolution network structures with a multi-objective immune algorithm", Appl. Soft Comput. vol, 13(4), pp. 1705–1717, (2013).
[23] Ji Ping, Zhang Shanxin, Zhou ZhiPing. "A decomposition-based ant colony optimization algorithm for the multi-objective community detection", Journal of Ambient Intelligence and Humanized Computing, vol. 11, pp. 173–188, (2020). https://doi.org/10.1007/s12652-019-01241-1.
[24] Luo, X., Liu, Z., Shang, M., Lou, J., Zhou, M., "Highly accurate community detection via pointwise mutual information incorporated symmetric nonnegative matrix factorization", IEEE Transactions on Network Science and Engineering, vol. 8 (1), pp. 463–476, (2021).
[25] Lu, H., Sang, X., Zhao, Q., and Lu, J., "Community detection algorithm based on nonnegative matrix factorization and improved density peak clustering", IEEE Access, vol. 8, pp. 5749–5759, (2020).
[26] Fiscarelli, A., Brust, M., Danny, G., Bouvry, P., "A vertex-similarity clustering algorithm for community detection", Journal of Information and Telecommunication, vol. 4(1), (2020). https://doi.org/10.1080/24751839.2019.1686683.
[28] Chi, Y., Song, X., Zhou, D., Hino, K., and Tseng, B., "ACM Trans", Knowl. Discov. Data 3, vol. 17(1), (2009).
[29] Tang, F., Wang, Ch., Su, J., Wang, Y., "Semidefinite programming based community detection for node-attributed and multiplex networks", Communications in Statistics - Simulation and Computation, Published online. (2020). https://doi.org/10.1080/03610918.2020.1847291.
[31] Ye Zhiwen, Zhang Hui, Feng Libo, and Shan Zhangming. CDCN: A New NMF-Based Community Detection Method with Community Structures and Node Attributes. Wireless Communications and Mobile Computing, (2021). https://doi.org/10.1155/2021/5517204.
[32] Tang, F., Ding, W., "Community detection with structural and attribute similarities", School of Mathematics Sciences, Huaibei Normal University, Huaibei, Chinahttp://orcid.org/0000-0001-8582-2078 Journal of Statistical Computation and Simulation, vol. 89(4), (2019). https://doi.org/10.1080/00949655.2019.1568435.
[33] Chen, Q., Qiao, T. L., Hu, F., Li, Y., "Community detection in complex network based on the APT method", Pattern Recognition, (2020). https://doi.org/10.1016/j.patrec.2020.07.021.
[34] Alvari, H., Lakkaraju, K., Sukthankar, G., and Whetzel, J., "Predicting guild membership in massively multiplayer online games", In Proceedings of the International Conference on Social Computing, Behavioral-Cultural Modeling, and Prediction, Washington, pp. 215–222, (2014).
[35] Beigi, G., Alvari, H., Jalili, M., and Sukthankar, G., "Leveraging community detection for accurate trust prediction", In ASE International Conference on Social Computing, Palo Alto, CA, May, (2014).
[37] Xie, J., and Szymanski, B., "Labelrank: A stabilized label propagation algorithm for network community detection", In-Network Science Workshop (NSW), IEEE, pp. 138-143, (2013).
[38] Zhang, X., Ren, J., Song, Ch., and Zhang, Q., "Label propagation algorithm for community detection based on node importance and label influence", Physics Letters A, vol. 381(33), pp. 2691-2698, (2017). https://doi.org/10.1016/j.physleta.2017.06.018.
[39] Zhong, W., Liu, J., Xue, M., Jiao, L., "A multi-agent genetic algorithm for global numerical optimization", IEEE Trans, vol. 34 (2), pp. 1128–1141, (2004). https://doi.org/10.1109/TSMCB.2003.821456.
[40] Maesani, A., Lacca, G., Floreano, D., "Memetic Viability Evolution for Constrained Optimization", IEEE Transactions on Evolutionary Computation. vol. 1(20), pp. 125-144, (2016).
[41] Park, Y., Song, M., "A genetic algorithm for clustering problems", In Proceedings of the Third Annual Conference on Genetic Programming, (1998).
[42] Leung, Y., Wang, Y., "An orthogonal genetic algorithm with quantization for global numerical optimization", IEEE Trans. Evol. Comput. pp. 41–53, (2001).
[43] Li, Zh., Liu, J., "A multi-agent genetic algorithm for community detection in complex networks", Physica A, vol. 449, pp. 336–347, (2016).
[44] Liu, X., Murata, T., "Advanced modularity specialized label propagation algorithm for detecting communities in networks", Physica A. Statistical Mechanics and its Applications, vol. 398(7), (2010).
[46] Liu, J., Liu, T., "Detecting community structure in complex networks using simulated annealing with -means algorithms", Physica A: Statistical Mechanics and its Applications, vol. 389(11), pp. 2300-2309, (2010). https://doi.org/10.1016/j.physa.2010.01.042.
[49] Ma, L., "Multi-level learning-based memetic algorithm for community detection", Applied Soft Computing, vol. 19(0), pp. 121-133, (2014).
[51] Lancichinetti, A., Fortunato, S., Radicchi, F., "Benchmark graphs for testing community detection algorithms", Phys. Rev. E, (2008).
[52] Khomami, M., Rezvanian, A., Meybodi, M., "A New Cellular Learning Automata-based Algorithm for Community Detection in Complex Social Networks", Journal of Computational Science, vol. 24, pp. 413-426, (2018).
|