- Rahim, M. A., Hameed, R. M. A., Khalil, M. W., "Nickel as a catalyst for the electro-oxidation of methanol in alkaline medium", J. Power Source, Vol. 134, pp. 160–169, (2004), https://doi.org/10.1016/j.jpowsour.2004.02.034.
- Zhao, Y., Zhan, L., Tian, J., Nie, S., Ning, Z., "MnO2 modified multi-walled carbon nanotubes supported Pd nanoparticles for methanol electro-oxidation in alkaline media", J. Hydrogen Energy, Vol. 35, pp. 10522–10526, (2010).
- Nozad, A., Shahrokhian, S., Asgari, M., Ghannadi, M., Irannejad, L., Khanchi, A., "Electrocatalytic oxidation of methanol on a nickel electrode modified by nickel dimethylglyoxime complex in alkaline medium", Power Source, Vol. 144, pp. 21–27, (2005), https://doi.org/10.1016/j.jpowsour.2004.12.017.
- Yuan, F., Ni, Y., Zhang, L., Yuan, S., Wei, J., "Synthesis, properties and applications of flowerlike Ni–NiO composite microstructures", Mater. Chem. A, Vol. 1, pp. 8438–8444, (2013).
- Alnarabiji, M. , Tantawi, O., Ramli, A., Zabidi, N. A. M., Ben Ghanem, O., Abdullah, B., "Comprehensive review of structured binary Ni-NiO catalyst: Synthesis, characterization and applications", Renew. Sustain. Energy Rev., Vol. 114, pp. 109326, (2019).
- Wu, H., Wu, G., Wu, Q., Wang, L., "Facile synthesis and microwave absorbability of C@ Ni–NiO core–shell hybrid solid sphere and multi-shelled NiO hollow sphere", Charact, Vol. 97, pp. 18–26, (2014).
- Spinner, N., Mustain, W. , "Electrochimica Acta Effect of nickel oxide synthesis conditions on its physical properties and electrocatalytic oxidation of methanol", Electrochim. Acta, Vol. 56, pp. 5656–5666, (2011), https://doi.org/10.1016/j.electacta.2011.04.023.
- Yu, J., Ni, Y., Zhai, M., "Simple solution-combustion synthesis of Ni-NiO @ C nanocomposites with highly electrocatalytic activity for methanol oxidation", J. Phys. Chem. Solids, 112, pp. 119–126, (2018), https://doi.org/10.1016/j.jpcs.2017.09.022.
- Varma, A., Mukasyan, A. , Rogachev, A. S., Manukyan, K. V., "Solution Combustion Synthesis of Nanoscale Materials", Chem. Rev., Vol. 116, pp. 14493–14586, (2016), https://doi.org/10.1021/acs.chemrev.6b00279.
- Mukasyan, A. , Dinka, P., "Novel approaches to solution-combustion synthesis of nanomaterials", International Journal Self-Propagating High-Temperature Synth, Vol. 16, pp. 23–35, (2007), https://doi.org/10.3103/s1061386207010049.
- Novitskaya, E., Kelly, J. , Bhaduri, S., Graeve, O. A., "A review of solution combustion synthesis: an analysis of parameters controlling powder characteristics", Int. Mater. Rev., Vol. 66, pp. 188–214, (2021).
- Toniolo, J. , Bonadiman, R., Oliveira, L. L., Hohemberger, J. M., Bergmann, C. P., "Synthesis of nanocrystalline nickel oxide powders via glycine- nitrate synthesis of nanocrystalline nickel oxide powders via glycine- nitrate combustion", South. Braz. J. Chem, Vol. 13, pp. 53-63, (2005).
- Jung, C. , Jalota, S., Bhaduri, S. B., "Quantitative effects of fuel on the synthesis of Ni/NiO particles using a microwave-induced solution combustion synthesis in air atmosphere", Mater. Lett, Vol. 59, pp. 2426–2432, (2005), https://doi.org/10.1016/j.matlet.2005.03.021.
- Mote, V. , Purushotham, Y., Dole, B. N., "Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles", J. Theor. Appl. Phys, Vol. 6, pp. 1–8, (2012).
|