[1] R. Adhikari, Foundations of computational finance, The Mathematica J., 22 (2020), 1-59.
[2] R. Adhikari, Selected financial applications, The Mathematica J., 23 (2021), 1-33.
[3] A. Antonov, Variable importance determination by classifiers implemen-tation in Mathematica, Lecture Notes, Florida, 2015.
[4] G.O. Aragon, L. Li, J. Qian, The use of credit default swaps by bond mutual funds: Liquidity provision and counterparty risk, J. Finan. Econ., 131 (2019), 168-185.
[5] J. Bao, S. Franco, Y.-H. He, E. Hirst, G. Musiker, Y. Xiao, Quiver muta-tions, Seiberg duality, and machine learning, Phys. Rev. D., 102 (2020), Art. ID: 086013.
[6] T.R. Bielecki, M.R. Rutkowski, Credit Risk: Modeling, Valuation and Hedging, Springer, New York, 2004.
[7] C.M. Bishop, Pattern Recognition and Machine Learning, Springer, New York, NY, 2006.
[8] D. Brigo, N. Pede, A. Petrelli, Multi currency credit default swaps, Int. J. Theor. Appl. Finan., 22 (2019), 1950018.
[9] S. Carbo-Valverde, P. Cuadros-Solas, F. Rodríguez-Fernández, A machine learning approach to the digitalization of bank customers: Evidence from random and causal forests, Plos One, 15 (2020), Art. ID: e0240362.
[10] G.H. Chen, D. Shah, Explaining the success of nearest neighbor methods in prediction, Found. Trends Mach. Learn., 10 (2018), 337-588.
[11] K. Cortez, M. Rodríguez-García, S. Mongrut, Exchange market liquidity prediction with the K-nearest neighbor approach: Crypto vs. fiat curren-cies, Mathematics, 9 (2021), Art. ID: 56.
[12] P.P. da Silva, I. Vieira, C. Vieira, M&A operations: Further evidence of informed trading in the CDS market, J. Multi. Fin. Manag. 32-33 (2015), 116-130.
[13] M.L. De Prado, Advances in Financial Machine Learning, Wiley, New Jersey, 2018.
[14] W. E, Machine learning and computational mathematics, Commun. Comput. Phys., 28 (2020), 1639-1670.
[15] F.J. Fabozzi, S.M. Focardi, P.N. Kolm, Trends in Quantitative Finance, The Research Foundation of CFA Institute, USA, 2006.
[16] G. Gan, C. Ma, J. Wu, Data Clustering: Theory, Algorithms, and Ap-plications, SIAM, Philadelphia, 2007.
[17] N.L. Georgakopoulos, Illustrating Finance Policy with Mathematica, Springer International Publishing, Cham, Switzerland, 2018.
[18] D. Guégan, N. Huck, On the use of nearest neighbors in finance, Finance, 26 (2005), 67-86.
[19] B.M. Henrique, V.A. Sobreiro, H. Kimura, Literature review: Machine learning techniques applied to financial market prediction, Expert Sys. Appl., 124 (2019), 226-251.
[20] I. Hlivka, Credit default swap valuation, Lecture Notes, London, Quant Solutions Group, (2014), 1-2.
[21] I. Hlivka, Predictive analytics in finance: Patterns detection for outcome prediction, Lecture Notes, London, Quant Solutions Group, (2015), 1-14.
[22] A. Itkin, A. Lipton, D. Muravey, Generalized Integral Transforms in Mathematical Finance, World Scientific Publishing, Toh Tuck, Singapore, 2021.
[23] A. Itkin, V. Shcherbakov, A. Veygman, New model for pricing quanto credit default swaps, Int. J. Theor. Appl. Fin., 22 (2019), Art. ID: 1950003.
[24] M. Kuhn, K. Johnson, Applied Predictive Modeling, 1st ed., Springer Science + Business Media, New York, 2013.
[25] V. Kumar, M.L. Garg, Predictive analytics: A review of trends and techniques, Int. J. Comput. Appl., 182 (2018), 31-37.
[26] R. Mohamadinejad, A. Neisy, J. Biazar, ADI method of credit spread op-tion pricing based on jump-diffusion model, Iran. J. Numer. Anal. Optim., 11 (2021), 195-210.
[27] A. Mosavi, Y. Faghan, P. Ghamisi, P. Duan, S.F. Ardabili, E. Salwana, S.S. Band, Comprehensive review of deep reinforcement learning methods and applications in economics, Mathematics, 8 (2020), Art. ID. 1640.
[28] H. Ni, X. Dong, J. Zheng, G. Yu, An Introduction to Machine Learning in Quantitative Finance, World Scientific Publishing Europe Ltd., London, 2021.
[29] L. Sandoval Junior, Correlation of financial markets in times of crisis, Phys. A: Stat. Mech. Appl., 391 (2012), 187-208.
[30] J. Sirignano, A. Sadhwani, K. Giesecke, Deep learning for mortgage risk, J. Finan. Econometrics, 19 (2021), 313-368.
[31] Y. Son, H. Byun, J. Lee, Nonparametric machine learning models for predicting the credit default swaps: An empirical study, Expert Sys. Appl., 58 (2016), 210-220.