تعداد نشریات | 48 |
تعداد شمارهها | 1,607 |
تعداد مقالات | 17,593 |
تعداد مشاهده مقاله | 4,590,544 |
تعداد دریافت فایل اصل مقاله | 2,126,439 |
Finding an efficient machine learning predictor for lesser liquid credit default swaps in equity markets | ||
Iranian Journal of Numerical Analysis and Optimization | ||
مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 18 اسفند 1400 اصل مقاله (806.83 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22067/ijnao.2022.73453.1073 | ||
نویسنده | ||
Fazlollah Soleymani ![]() ![]() | ||
Department of Mathematics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran | ||
چکیده | ||
To solve challenges occurred in the existence of large sets of data, recent improvements of machine learning furnish promising results. Here to propose a tool for predicting lesser liquid credit default swap (CDS) rates in the presence of CDS spreads over a large period of time, we investigate different machine learning techniques and employ several measures such as the root mean square relative error to derive the best technique, which is useful for this type of prediction in finance. It is shown that nearest neighbor is not only efficient in terms of accuracy but also desirable with respect to elapsed time for running and deploying on unseen data. | ||
کلیدواژهها | ||
Credit default swap (CDS)؛ machine learning؛ prediction؛ liquidity؛ spread | ||
آمار تعداد مشاهده مقاله: 67 تعداد دریافت فایل اصل مقاله: 21 |