1.Abbas, M., Majid, A.A. and Ali, J.M. Monotonicity-preserving C2 rational cubic spline for monotone data, Appl. Math. Comput., 219(6) (2012), 2885–2895.
2. Abbas, M., Majid, A.A., Awang, M.H. and Ali, J.M. Shape-preserving rational bi-cubic spline for monotone surface data, ’WSEAS Trans. Math. 11(7) (2012), 660–673.
3. Abbas, M., Majid, A.A., Awang, M.N.H. and Ali, J.M. Monotonicity-preserving rational bi-cubic spline surface interpolation, Sci. Asia S, 40 (2014), 22–30.
4. Bashir, U., and Ali, J. M. Rational cubic trigonometric Bézier curve with two shape parameters, Comput. Appl. Math. 35(1) (2016), 285–300.
5. BiBi, S., Abbas, M., Misro, M.Y. and Hu, G. A novel approach of hybrid trigonometric Bézier curve to the modeling of symmetric revolutionary curves and symmetric rotation surfaces, IEEE Access, 7 (2019), 165779–165792.
6. BiBi, S., Abbas, M., Miura, K.T. and Misro, M.Y. Geometric modeling of novel generalized hybrid trigonometric Bézier-like curve with shape pa-rameters and its applications, Mathematics, 8(6) (2020), 967.
7. Carnicer, J.M., Garcia-Esnaola, M. and Peña, J.M. Convexity of rational curves and total positivity, J. Comput. Appl. Math. 71(2) (1996), 365–382.
8. Chen, J. and Wang, G.J. A new type of the generalized Bézier curves, Appl. Math. J. Chinese Univ. Ser. B, 26(1) (2011), 47–56.
9. Farin, G. E., and Farin, G. Curves and surfaces for CAGD: a practical guide, Morgan Kaufmann, 2002.
10. Floater, M.S. and Peña, J.M. Tensor-product monotonicity preservation, Adv. Comput. Math. 9(3) (1998), 353–362.
11. Hu, G., Bo, C., Wei, G. and Qin, X. Shape-adjustable generalized Bézier Surfaces: Construction and its geometric continuity conditions, Appl. Math. Comput. 378 (2020), 125215.
12. Hu, G., Du, B., Wang, X. and Wei, G. An enhanced black widow opti-mization algorithm for feature selection, Knowl Based Syst. 235 (2022), 107638.
13. Hu, X., Hu, G., Abbas, M. and Misro, M.Y. Approximate multi-degree re-duction of Q-Bézier curves via generalized Bernstein polynomial functions, Adv. Differ. Equ., 2020(1) (2020), 1–16.
14. Hu, G. and Wu, J.L. Generalized quartic H-Bézier curves: Construc-tion and application to developable surfaces, Adv. Eng. Softw. 138 (2019),102723.
15. Hu, G., Wu, J. and Qin, X. A new approach in designing of local controlled developable H-Bézier surfaces, Adv. Eng. Softw. 121 (2018), 26–38.
16. Hu, G., Wu, J. and Qin, X. A novel extension of the Bézier model and its applications to surface modeling, Adv. Eng. Softw. 125 (2018), 27–54.
17. Juhász, I. A NURBS transition between a Bézier curve and its control polygon, J. Comput. Appl. Math. 396 (2021), 113626.
18. Kovács, I. and Várady, T. P-curves and surfaces: Parametric design with global fullness control, Computer-Aided Design, 90 (2017), 113–122.
19. Kovács, I. and Várady, T. P-Bézier and P-Bspline curves–new represen-tations with proximity control, Computer Aided Geom. Des. 62 (2018), 117–132.
20. Li, J. A novel Bézier curve with a shape parameter of the same degree, Results Math. 73(4) (2018), 1–11.
21. Majeed, A., Abbas, M., Qayyum, F., Miura, K.T., Misro, M.Y. and Nazir, T. Geometric modeling using new Cubic trigonometric B-Spline functions with shape parameter, Mathematics, 8(12) (2020), 2102.
22. Maqsood, S., Abbas, M., Hu, G., Ramli, A.L.A. and Miura, K.T. A novel generalization of trigonometric Bézier curve and surface with shape parameters and its applications, Math. Probl. Eng. 2020, Art. ID 4036434, 25 pp.
23. Maqsood, S., Abbas, M., Miura, K.T., Majeed, A. and Iqbal, A. Geomet-ric modeling and applications of generalized blended trigonometric Bézier curves with shape parameters, Adv. Differ. Equ. 2020(1) (2020), 1–18.
24. Qin, X., Hu, G., Zhang, N., Shen, X. and Yang, Y. A novel extension to the polynomial basis functions describing Bézier curves and surfaces of degree n with multiple shape parameters, Appl. Math. Comput. 223 (2013), 1–16.
25. Saeidian, J., Sarfraz, M., Azizi, A. and Jalilian, S. A new approach of constrained interpolation based on cubic Hermite splines, J. Math. 2021, Art. ID 5925163, 10 pp.
26. Saeidian, J., Sarfraz, M. and Jalilian, S. Bound-preserving interpolation using quadratic splines, Journal of Mathematical Modeling, (2020), 1–13.
27. Sarfraz, M., Hussain, M.Z. and Hussain, F. Shape preserving convex data interpolation, Appl. Comput, Math. 16(3) (2017), 205–227.
28. Sarfraz, M., Samreen, S. and Hussain, M.Z. A Quadratic Trigonometric Nu Spline with Shape Control, Int. J. Image Graph. 17(03) (2017), 1750015.
29. Tariq, Z., Ibraheem, F., Hussain, M.Z. and Sarfraz, M. Monotone data modeling using rational functions, Turk. J. Electr. Eng. Comput. Sci. 27(3) (2019), 2331–2343.
30. Usman, M., Abbas, M., and Miura, K.T. Some engineering applications of new trigonometric cubic Bézier-like curves to free-form complex curve modeling, J. Adv. Mech. Des. Syst. Manuf. 14(4) (2020), JAMDSM0048-JAMDSM0048.
31. Yan, L. Adjustable Bézier curves with simple geometric continuity con-ditions, Math. Comput. Appl. 21(4) (2016), 44.
32. Yan, L. and Liang, J. An extension of the Bézier model, Appl. Math. Comput. 218(6) (2011), 2863–2879.