- Agostinho, F., & Pereira, L. (2013). Support area as an indicator of environmental load: Comparison between embodied energy, ecological footprint, and emergy accounting methods. Ecological Indicators, 24, 494-503. DOI:1016/j.ecolind.2012.08.006
- Ahmadi, F., Radmanesh, F., Parham, G.A., & Mirabbasi Najafabadi, R. (2017). Application of Archimedean joint functions in flood frequency analysis (Case study: Dez catchment). Iranian Soil and Water Research (Iranian Agricultural Sciences), 48(3), 477-489. (In Persian with English Summary). DOI:22059/ijswr.2017.217805.667551
- Akcaoz, H., Ozcatalbas, O., & Kizilay, H. (2009). Analysis of energy use for pomegranate production in Turkey. Journal of Food, Agriculture and Environment, 7(2), 475-480.
- Amini, S., Rohani, A., Aghkhani, M.H., Abbaspour-Fard, M.H., & Asgharipour, M.R. (2020). Sustainability assessment of rice production systems in Mazandaran province, Iran with emergy analysis and fuzzy logic. Sustainable Energy Technologies and Assessments, 40, 100744. https://doi.org/10.1016/j.seta.2020.100744
- Bahrami, A. (2015). Environmental impact assessment of agricultural farming systems in Hamedan province: using ecological footprint analysis. D. Dissertation, Faculty of Agriculture, Bu-Ali Sina University of Hamedan, Iran. (In Persian with English Summary)
- Bavec, M., Narodoslawsky, M., Bavec, F., & Turinek, M. (2011). Ecological impact of wheat and spelt production under industrial and alternative farming systems. Renewable Agriculture and Food Systems, 27(3), 242-250. DOI:1017/S1742170511000354
- Canakci, M., & Akinci, I. (2006). Energy use pattern analyses of greenhouse vegetable production. Energy, 31(8-9), 1243-1256. https://doi.org/10.1016/j.energy.2005.05.021
- Canakci, M., Topakci, M., Akinci, I., & Ozmerzi, A. (2005). Energy use pattern of some field crops and vegetable production: Case study for Antalya region, Turkey. Energy conversion and Management, 46(4), 655-666. https://doi.org/10.1016/j.enconman.2004.04.008
- Cetin, B., & Vardar, A. (2008). An economic analysis of energy requirements and input costs for tomato production in Turkey. Renewable Energy, 33(3), 428-433. https://doi.org/10.1016/j.renene.2007.03.008
- Fallahpour, F., Aminghafouri, A., Behbahani, A.G., & Bannayan, M. (2012). The environmental impact assessment of wheat and barley production by using life cycle assessment (LCA) methodology. Environment, Development and Sustainability, 14(6), 979-992. DOI:1007/s10668-012-9367-3
- Fang, K., Heijungs, R., & de Snoo, G.R. (2014). Theoretical exploration for the combination of the ecological, energy, carbon, and water footprints: Overview of a footprint family. Ecological Indicators, 36, 508-518. https://doi.org/10.1016/j.ecolind.2013.08.017
- Feyzbakhsh, M.T., & Soltani, A. (2013). Energy flow and global warming potential of corn farm (Gorgan city). Journal of Crop Production (EJCP), 6(3), 89-107. (In Persian with English Summary). 1001.1.2008739.1392.6.3.6.6
- Solís-Guzmán, J., Marrero, M., & Ramírez-de-Arellano, A. (2013). Methodology for determining the ecological footprint of the construction of residential buildings in Andalusia (Spain). Ecological Indicators, 25, 239-249. https://doi.org/10.1016/j.ecolind.2012.10.008
- Kaltsas, A.M., Mamolos, A.P., Tsatsarelis, C.A., Nanos, G.D., & Kalburtji, K.L. (2007). Energy budget in organic and conventional olive groves. Agriculture, Ecosystems & Environment, 122(2), 243-251. DOI:1016/j.agee.2007.01.017
- Kissinger, M., & Gottlieb, D. (2012). From global to place oriented hectares—The case of Israel's wheat ecological footprint and its implications for sustainable resource supply. Ecological Indicators, 16, 51-57. DOI:1016/j.ecolind.2011.03.012
- Naderi Mahdei, K., Bahrami, A., Aazami, M., & Sheklabadi, M. (2015). Assessment of agricultural farming systems sustaina bility in Hamedan province using ecological footprint analysis (Case study: irrigated wheat). Journal of Agricultural Science and Technology (JAST), 17, 1409-1420.
- Ozkan, B., Akcaoz, H., & Fert, C. (2004). Energy input–output analysis in Turkish agriculture. Renewable Energy, 29(1), 39-51. https://doi.org/10.1016/S0960-1481(03)00135-6
- Pilevar, A.R., Matinfar, H.R., Sohrabi, A., & Sarmadian, F. (2020). Integrated fuzzy, AHP and GIS techniques for land suitability assessment in semi-arid regions for wheat and maize farming. Ecological Indicators, 110, 105887. DOI:1016/j.ecolind.2019.105887
- Rathke, G.W., & Diepenbrock, W. (2006). Energy balance of winter oilseed rape (Brassica napus) cropping as related to nitrogen supply and preceding crop. European Journal of Agronomy, 24(1), 35-44. DOI:10.1016/j.eja.2005.04.003
- Rees, W.E., & Wackernagel, M. (1999). Monetary analysis: Turning a blind eye on sustainability. Ecological Economics, 29(1), 47-52.
- Rezaei, P., Naderi Mahdei, K., Karimi, S., & Shanazi, K. (2019). Environmental sustainability assessment of farming system using ecological footprint analysis (Case study: potato and cucumber cultivation in Sofalgaran district of Bahar county). Agricultural Knowledge and Sustainable Production, 29(2). (In Persian with English Summary)
- Sarkar, D., Kar, S.K., Chattopadhyay, A., Rakshit, A., Tripathi, V.K., Dubey, P.K., & Abhilash, P.C. (2020). Low input sustainable agriculture: A viable climate-smart option for boosting food production in a warming world. Ecological Indicators, 115, 106412. https://doi.org/10.1016/j.ecolind.2020.106412
- Sarkodie, S.A., Strezov, V., Weldekidan, H., Asamoah, E.F., Owusu, P.A., & Doyi, I.N.Y. (2019). Environmental sustainability assessment using dynamic autoregressive-distributed lag simulations-nexus between greenhouse gas emissions, biomass energy, food and economic growth. Science of the Total Environment, 668, 318-332. DOI: 1016/j.scitotenv.2019.02.432
- Silalertruksa, T., & Gheewala, S.H. (2018). Land-water-energy nexus of sugarcane production in Thailand. Journal of Cleaner Production, 182, 521-528. https://www.sciencedirect.com/science/article/pii/S0959652618303913
- Strapatsa, A.V., Nanos, G.D., & Tsatsarelis, C.A. (2006). Energy flow for integrated apple production in Greece. Agriculture, Ecosystems & Environment, 116(3-4), 176-180. DOI:1016/j.agee.2006.02.003
- Streimikis, J., & Baležentis, T. (2020). Agricultural sustainability assessment framework integrating sustainable development goals and interlinked priorities of environmental, climate and agriculture policies. Sustainable Development, 28(6), 1702-1712.
- https://doi.org/10.1002/sd.2118
- Tabatabaeefar, A., Emamzadeh, H., Varnamkhasti, M.G., Rahimizadeh, R., & Karimi, M. (2009). Comparison of energy of tillage systems in wheat production. Energy, 34(1), 41-45. DOI:1016/j.energy.2008.09.023
- Talukder, B., Blay-Palmer, A., & Hipel, K.W. (2020). Towards complexity of agricultural sustainability assessment: Main issues and concerns. Environmental and Sustainability Indicators, 6, 100038. https://doi.org/10.1016/j.indic.2020.100038
- Tarazkar, M.H., Dehbidi, N., & shokoohi, Z. (2019). Estimating the ecological footprint of agricultural production in D-8 Islamic countries. Journal of Environmental Sciences, 16(4), 17-32. (In Persian with English Summary)
- Tipi, T., Cetin, B., & Vardar, A. (2009). An analysis of energy use and input costs for wheat production in Turkey. Journal of Food, Agriculture & Environment, 7(2), 352-356.
- Tzilivakis, J., Warner, D.J., May, M., Lewis, K.A., & Jaggard, K. (2005). An assessment of the energy inputs and greenhouse gas emissions in sugar beet (Beta vulgaris) production in the UK. Agricultural Systems, 85(2), 101. https://doi.org/10.1016/j.agsy.2004.07.015
|