تعداد نشریات | 48 |
تعداد شمارهها | 1,605 |
تعداد مقالات | 17,590 |
تعداد مشاهده مقاله | 4,532,903 |
تعداد دریافت فایل اصل مقاله | 2,091,529 |
On stagnation of the DGMRES method | ||
Iranian Journal of Numerical Analysis and Optimization | ||
مقالات آماده انتشار، اصلاح شده برای چاپ، انتشار آنلاین از تاریخ 24 اسفند 1400 اصل مقاله (169.07 K) | ||
نوع مقاله: SPECIAL ISSUE- Volume 12 No 2 (Summer 2022) | ||
شناسه دیجیتال (DOI): 10.22067/ijnao.2022.73913.1081 | ||
نویسنده | ||
Faranges Kyanfar ![]() ![]() | ||
Department of Applied Mathematics, Shahid Bahonar University of Kerman, Kerman, Iran | ||
چکیده | ||
Let $A$ be an $n$-by-$n$ matrix with index $\alpha>0$ and $b \in \mathbb{C}^n$. In this paper, the problem of stagnation of the DGMRES method for the singular linear system $Ax=b$ is considered. We show that DGMRES$(A, b, \alpha)$ has partial stagnation of order at least $k$ if and only if $(0, \ldots, 0)$ belongs to the the joint numerical range of matrices ${B^{\alpha+1}, \ldots, B^{\alpha+k}},$ where $B$ is a compression of $A$ to the range of $A^{\alpha}.$ Also, we characterize nonsingular part of a matrices $A$ such that DGMRES$(A, b, \alpha)$ does not stagnate for all $b \in \mathbb{C}^n$. Moreover, a sufficient condition for non-existence of real stagnation vectors $b \in \mathcal{R}(A^{\alpha}) $ for DGMRES method is presented and the DGMRES stagnation of special matrices are studied. | ||
کلیدواژهها | ||
Stagnation؛ DGMRES method؛ Singular systems | ||
آمار تعداد مشاهده مقاله: 65 تعداد دریافت فایل اصل مقاله: 1 |