- Abdollahian-Noghabi, M., Sharifi, H., Babaei, B., & Bahmani, G. (2013). Introduction of new formula for determination of autumn sugar beet purchase. Journal of Sugar Beet, 29(2), 227-215. org/10.22092/JSB.2014.5635
- Abeledo, L. G., Savin, R., & Slafer, G. A. (2008). Wheat productivity in the Mediterranean Ebro Valley: Analyzing the gap between attainable and potential yield with a simulation model. European Journal of Agronomy, 28, 541-550. org/10.1016/j.eja.2007.12.001
- Altieri, M. A. (2002). Agroecology: the science of natural resource management for poor farmers in marginal environments. Agriculture, Ecosystems & Environment, 93(3): 1-24. org/10.1016/S0167-8809(02)00085-3
- Andarzian, S. B. (2019). Determination of sowing time, grain yield potential, yield gap, and risk analysis of wheat production in rainfed regions of Khuzestan Province in Iran. Seed and Plant Production Journal, 35(2), 159-181. org/10.22092/SPPJ.2019.120755
- Badsar, M., Kamkar, B., Soltani, A., & Abdi, O. (2017). Yield gap estimation in wheat-grown fields using GIS and RS approach and SSM model (A case study: Qaresso basin, Gorgan, Iran). Cereal Research, 7(2), 195-215. org/10.22124/C.2017.2547
- Berry, E. M., Dernini, S., Burlingame, B., Meybeck, A., & Conforti, P. (2015). Food security and sustainability: can one exist without the other? Public Health Nutrition, 18(13), 2293-2302. org/10.1017/S136898001500021X
- Beckmann, M., Gerstner, K., Akin‐Fajiye, M., Ceauu, S., Kambach, S., Kinlock, N. L., Phillips, H. R., Verhagen, W., Gurevitch, J., Klotz, S., & Newbold, T. (2019). Conventional land‐use intensification reduces species richness and increases production: A global meta‐Global Change Biology, 25(6), 1941-1956. doi.org/10.1111/gcb.14606
- Brzozowski, L., & Mazourek, M. (2018). A sustainable agricultural future relies on the transition to organic agroecological pest management. Sustainability, 10(6), 2023. org/10.3390/su10062023
- Bicharanloo, B., Rezvani Moghaddam, P., & Asadi, G. (2021). Does summer irrigation alter nitrogen uptake and utilisation efficiency of saffron (Crocus sativus) for different organic and chemical fertilisers? Archives of Agronomy and Soil Science, 67(13), 1754-1769. doi.org/10.1080/03650340.2020.1808200
- Brummer, E. C., Barber, W. T., Collier, S. M., Cox, T. S., Johnson, R., Murray, S. C., Richard T. O., Richard C. P., & Thro A. M. (2011) Plant breeding for harmony between agriculture and the environment. Frontiers in Ecology and the Environment, 9(10), 561-568. org/10.1890/100225
- Calderini, D. F., & Slafer, G. A. (1998). Changes in yield and yield stability in wheat during the 20thField Crops Research, 57(3), 335-347. doi.org/10.1016/S0378-4290(98)00080-X
- Caldiz, D. O., Gaspari, F. J., Haverkort, A. J., & Struik, P. C. (2001). Agro-ecological zoning and potential yield of single or double cropping of potato in Argentina. Agricultural and Forest Meteorology, 109, 311-320. org/10.1016/S0168-1923(01)00231-3
- Cassman, K. G., & Grassini, P. (2020). A global perspective on sustainable intensification research. Nature Sustainability, 3(4), 262-268. org/10.1038/s41893-020-0507-8
- Carvalho, F. P. (2006). Agriculture, pesticides, food security and food safety. Environmental Science & Policy, 9(7-8): 685-692. org/10.1016/j.envsci.2006.08.002
- Clay, N., Garnett, T., & Lorimer, J. (2020). Dairy intensification: Drivers, impacts and alternatives. Ambio 49(1): 35-48. org/10.1007/s13280-019-01177-y
- Commission, E. (2012). Agri-Environmental Indicator- Intensification- Extensification. Belgium, EU Rural Rwview. 2014.
- Cobb, J. N., DeClerck, G., Greenberg, A., Clark, R., & McCouch, S. (2013). Next-generation phenotyping: requirements and strategies for enhancing our understanding of genotype–phenotype relationships and its relevance to crop improvement. Theoretical and Applied Genetics, 126(4), 867-887. org/10.1007/s00122-013-2066-0
- Congreves, K. A., Otchere, O., Ferland, D., Farzadfar, S., Williams, S., & Arcand, M. M. (2021). Nitrogen use efficiency definitions of today and tomorrow. Frontiers in Plant Science, 12, 637108. https://doi.org/10.3389/fpls.2021.637108
- Cormier, F., Foulkes, J., Hirel, B., Gouache, D., Moënne‐Loccoz, Y., & Le Gouis, J. (2016). Breeding for increased nitrogen‐use efficiency: a review for wheat ( aestivum L.). Plant Breeding, 135(3), 255-278. doi.org/10.1111/pbr.12371
- Dimkpa, C. O., Fugice, J., Singh, U., & Lewis, T. D. (2020). Development of fertilizers for enhanced nitrogen use efficiency–Trends and perspectives. Science of the Total Environment, 731(13), 1-13. org/10.1016/j.scitotenv.2020.139113
- Dihim Fard, R., & Nazari, S. (2015). Effect of nitrogen application on quantitative and qualitative of sugar beet cultivars. Journal of Plant Production Research, 22(2), 71-93. org/100.1.1.23222050.1394.22.2.4.3
- FAO. (2018). FAOSTAT. Retrieved from: http://faostat.fao.org/site/567/DesktopDefault.aspx?PagelD=567#ancor
- FAO. (1978). Report on the Agroecological Zones Project. Vol. 1. Methodology and results for Africa. World Soil Resources Report 48/1. FAO, Rome, 158cpp. http://faostat.fao.org
- FAO. (1981). Report on the Agroecological Zones Project. Vol. 3. Methodology and results for South and Central America. World Soil Resources Report 48/3. FAO, Rome, 251 pp. http://faostat.fao.org
- Funk, C. C., & Brown, M. E. (2009). Declining global per capita agricultural production and warming oceans threaten food security. Food Security, 1(3), 271-289. org/10.1007/s12571-009-0026-y
- Foulkes, M. J., Hawkesford, M. J., Barraclough, P. B., Holdsworth, M. J., Kerr, S., Kightley, S., & Shewry, P. R. (2009). Identifying traits to improve the nitrogen economy of wheat: Recent advances and future prospects. Field Crops Research, 114(3), 329-342. org/10.1016/j.fcr.2009.09.005
- Gobbett, D. L., Hochman, Z., Horan, H., Garcia, J. N., Grassini, P., & Cassman, K. G. (2017). Yield gap analysis of rainfed wheat demonstrates local to global relevance. The Journal of Agricultural Science, 155, 282-299. org/10.1017/S0021859616000381
- Hazell, P. B. (2010). An assessment of the impact of agricultural research in South Asia since the green revolution. Handbook of Agricultural Economics, 4, 3469-3530. org/10.1016/S1574-0072(09)04068-7
- Hunt, R. C. (2000). Labor productivity and agricultural development: Boserup Revisited. Human Ecology, 28, 251-277. org/10.1023/A:1007072120891
- Hutchings, N. J., Sorensen, P., Cordovil, C. M., Leip, A., & Amon, B. (2020). Measures to increase the nitrogen use efficiency of European agricultural production. Global Food Security, 26, 100381. org/10.1016/j.gfs.2020.100381
- Knapp, S., & der Heijden, V. M. G. (2018). A global meta-analysis of yield stability in organic and conservation agriculture. Nature Communications, 9(1), 1-9. org/10.1038/s41467-018-05956-1
- Kopittke, P. M., Menzies, N. W., Wang, P., McKenna, B. A., & Lombi, E. (2019). Soil and the intensification of agriculture for global food security. Environment International, 132, 105078. org/10.1016/j.envint.2019.105078
- Langholtz, M., Davison, B. H., Jager, H. I., Eaton, L., Baskaran, L. M., Davis, M., & Brandt, C. C. (2021). Increased nitrogen use efficiency in crop production can provide economic and environmental benefits. Science of the Total Environment, 758, 143602. org/10.1016/j.scitotenv.2020.143602
- Lobell, D. B., Cassman, K. G., & Field, C. B. (2009). Crop yield gaps: their importance, magnitudes, and causes. Annual Review of Environment and Resources, 34, 179-204. org/10.1146/annurev.environ.041008.093740
- Ministry of Agriculture-Jahad (2001-2020) Agricultural Statistics, (Vol. 2). Islamic Republic of Iran, Ministry of Agriculture-Jahad, Press.
- Moll, R. H., Kamprath, E. J., & Jackson, W. A. (1982). Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agronomy Journal, 74, 562e564. org/10.2134/agronj1982.00021962007400030037x
- Nassiri mahalati, M., & Koocheki, A. (2018). Yield monitoring for wheat and sugar beet in Khorasan Province: 1- Analysis of Methods for Estimating Potential Yield. Iranian Journal of Field Crops Research, 16(4), 723-741. org /10.22067/gsc.v17i1.62557
- Nassiri mahalati, M., Koocheki, A. (2014). Long term evaluation of yield stability trend for cereal crops in Iran. Journal of Agroecology, 6(3), 607-621. org /10.22067/JAG.V6I3.26802
- Nassiri mahalati, M., & Koocheki, A. (2017). Trend analysis of nitrogen use and productivity in wheat (Triticum aestivum) production systems of Iran. Journal of Agroecology, 9(2), 360-378. doi.org/10.22067/JAG.V9I2.29287
- Neumann, K., Verberg, P. H., Stehfest, E., & Muller, C. (2010). The yield gap of global grain production: a spatial analysis. Agricultural Systems, 103, 316-326. org/10.1016/j.agsy.2010.02.004
- Nielsen, D. C., & Vigil, M. F. (2018). Wheat yield and yield stability of eight dryland crop rotations. Agronomy Journal, 110(2), 594-601. org/10.2134/agronj2017.07.0407
- Nikoei, A., Bagheri, A., Soleimanipor, I., Shirvanian, A., Zare, Sh., Nemati, A., & Ebrahimian, H. (2007). Survey of sugar beet employment rate in Iran. Journal of Sugar Beet, 23(1), 93-108. org/10.22092/JSB.2007.1255
- Palmer, C. (2008). Environmental Ethics and Agricultural Intensification. In: Thompson P.B. (eds) The Ethics of Intensification. The International Library of Environmental, Agricultural and Food Ethics, 16, 131-148. Springer, Dordrecht. org/10.1007/978-1-4020-8722-6_9
- Pellegrini, P., & Fernández, R. J. (2018). Crop intensification, land use, and on-farm energy-use efficiency during the worldwide spread of the green revolution. Proceedings of the National Academy of Sciences, 115(10), 2335-2340. org/10.1073/pnas.1717072115
- Pittelkow, C. M., Zorrilla, G., Terra, J., Riccetto, S., Macedo, I., Bonilla, C., & Roel, A. (2016). Sustainability of rice intensification in Uruguay from 1993 to 2013. Global Food Security, 9, 10-18. org/10.1016/j.gfs.2016.05.003
- Ray, D. K., Gerber, J. S., MacDonald, G. K., & West, P. C. (2015). Climate variation explains a third of global crop yield variability. Nature Communications, 6(1), 1-9. org/10.1038/ncomms6989
- Sanghera, G. S., Singh, R. P., Kashyap, L., Tyagi, V., & Sharma, B. (2016). Evaluation of sugarbeet genotypes (Beta Vulgaris) for root yield and quality traits under subtropical conditions. Journal of Krishi Vigyan, 5(1), 67-73. doi.org/10.5958/2349-4433.2016.00037.4
- Senapati, N., & Semenov, M. A. (2020). Large genetic yield potential and genetic yield gap estimated for wheat in Europe. Global Food Security, 24, 100340. org/10.1016/j.gfs.2019.100340
- Sharma, L. K., & Bali, S. K. (2017). A review of methods to improve nitrogen use efficiency in agriculture. Sustainability, 10(1), 1-23. org/10.3390/su10010051
- Thomson, A. M., Ellis, E. C., Grau, H. R., Kuemmerle, T., Meyfroidt, P., Ramankutty, N., & Zeleke, G. (2019). Sustainable intensification in land systems: trade-offs, scales, and contexts. Current Opinion in Environmental Sustainability, 38, 37-43. org/10.1016/j.cosust.2019.04.011
- United Nations, Department of Economic and Social Affairs, Population Division. (2019). World Population Prospects 2019 - Special Aggregates, Online Edition. Rev. 1. https://population.un.org/wpp2019/Download/SpecialAggregates/EconomicTrading/
- Urruty, N., Tailliez-Lefebvre, D., & Huyghe, C. (2016). Stability, robustness, vulnerability and resilience of agricultural systems. A review. Agronomy for Sustainable Development, 36(1), 15-32. org/10.1007/s13593-015-0347-5
- Van Bueren, E. T. L., & Struik, P. C. (2017). Diverse concepts of breeding for nitrogen use efficiency. A review. Agronomy for Sustainable Development, 37(5), 1-24. org/10.1007/s13593-017-0457-3
- Versteeg, M. N., & Van Keulen, H. (1986). Potential crop production prediction by some simple calculation methods, as compared with computer simulations. Agricultural Systems, 19(4), 249-272. org/10.1016/0308-521X(86)90109-5
- Wallace, A. J., Armstrong, R. D., Grace, P. R., Scheer, C., & Partington, D. L. (2020). Nitrogen use efficiency of 15 N urea applied to wheat based on fertiliser timing and use of inhibitors. Nutrient Cycling in Agroecosystems, 116(1), 41-56. org/10.1007/s10705-019-10028-x
- Wu, P., Liu, F., Li, H., Cai, T., Zhang, P., & Jia, Z. (2021). Suitable fertilizer application depth can increase nitrogen use efficiency and maize yield by reducing gaseous nitrogen losses. Science of The Total Environment, 781, 146787. org/10.1016/j.scitotenv.2021.146787
- Wilson, J. S., & Otsuki, T. (2004). To spray or not to spray: pesticides, banana exports, and food safety. Food Policy, 29(2), 131-146. org/10.1016/j.foodpol.2004.02.003
- Yang, H., Mo, P., Chen, Y., Chen, R., Wei, T., Xie, W., Xiang, X., Huang, X., Zheng, T., & Fan, G. (2021). Genetic progress in grain yield radiation and nitrogen use efficiency of dryland winter wheat in Southwest China since 1965: Progress and prospect for improvements. Crop Science, 61(6), 4255-4272. org/10.1002/csc2.20608
- Zhang, Z., Zhang, Y., Shi, Y., & Yu, Z. (2020). Optimized split nitrogen fertilizer increase photosynthesis, grain yield, nitrogen use efficiency and water use efficiency under water-saving irrigation. Scientific Reports, 10(1), 1-14. org/10.1038/s41598-020-75388-9
|