1- Abbaspour K.C., Johnson C.A., and Genuchten M.T van. 2004. Estimating Uncertain Flow and Transport Parameters Using a Sequential Uncertainty Fitting Procedure 1352: 1340–1352. https://doi.org/10.2113/3.4.1340.
2- Abbaspour K.C., Rouholahnejad E., Vaghefi S.R.I.N.I.V.A.S.A.N.B., Srinivasan R., Yang H., and Kløve B. 2015. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology 524: 733-752. https://doi.org/10.1016/j.jhydrol.2015.03.027.
3- Abbaspour K.C., Yang J., Maximov I., Siber R., Bogner K., Mieleitner J., Zobrist J., and Srinivasan R. 2007. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology 333(2–4): 413–430. https://doi.org/10.1016/j.jhydrol.2006.09.014.
4- Andrianaki M., Shrestha J., Kobierska F., Nikolaidis N.P., and Bernasconi S.M. 2019. Assessment of SWAT spatial and temporal transferability for a high-altitude glacierized catchment. Hydrology and Earth System Sciences 23(8): 3219-3232. https://doi.org/10.5194/hess-23-3219-2019.
5- Arnold JG., Kiniry JR., Srinivasan R., Williams JR., Haney EB., and Neitsch SL. 2012. Soil & Water Assessment Tool.
6- Arnold J.G., Srinivasan R., Muttiah R.S., and Williams J.R. 1998. Large area hydrologic modeling and assessment part I: model development 1. JAWRA Journal of the American Water Resources Association 34(1): 73-89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x.
7- Azimi M., Heshmati G.A., Farahpour M., Faramarzi M., and Abbaspour K.C. 2013. Modeling the impact of rangeland management on forage production of sagebrush species in arid and semi-arid regions of Iran. Ecological Modelling 250: 1-14. https://doi.org/10.1016/j.ecolmodel.2012.10.017.
8- Bagnold RA. 1977. Bed load transport by natural rivers. Water Resources Research 13(2): 303–312. https://doi.org/10.1029/WR013i002p00303.
9- Bhatta B., Shrestha S., Shrestha PK., and Talchabhadel R. 2020. Modelling the impact of past and future climate scenarios on streamflow in a highly mountainous watershed: A case study in the West Seti River Basin, Nepal. Science of the Total Environment. Elsevier B.V 740: 140156. https://doi.org/10.1016/j.scitotenv.2020.140156.
10- Carpenter SR. 2008. Phosphorus control is critical to mitigating eutrophication. Proceedings of the National Academy of Sciences of the United States of America 105(32): 11039–11040. https://doi.org/10.1073/pnas.080611210.
11- D’Ambrosio E., De Girolamo AM., Barca E., Ielpo P., and Rulli MC. 2017. Characterising the hydrological regime of an ungauged temporary river system: a case study. Environmental Science and Pollution Research 24(16): 13950–13966. https://doi.org/10.1007/s11356-016-7169-0.
12- Engebretsen A., Vogt R.D., and Bechmann M. 2019. SWAT model uncertainties and cumulative probability for decreased phosphorus loading by agricultural Best Management Practices. Catena 175: 154-166. https://doi.org/10.1016/j.catena.2018.12.004.
13- Faramarzi M., Abbaspour KC., Adamowicz WLV., Lu W., Fennell J., Zehnder AJB., and Goss GG. 2017. Uncertainty based assessment of dynamic freshwater scarcity in semi-arid watersheds of Alberta, Canada. Journal of Hydrology Regional Studies 9: 48-68. https://doi.org/10.1016/j.ejrh.2016.11.003.
14- Flynn K.F., and Van Liew M.W. 2011. Evaluation of SWAT for sediment prediction in a mountainous snowmelt-dominated catchment. Transactions of the ASABE 54(1): 113-122. https://doi.org/10.13031/2013.36265.
15- Grusson Y., Sun X., Gascoin S., Sauvage S., Raghavan S., Anctil F., and Sáchez-Pérez J.M. 2015. Assessing the capability of the SWAT model to simulate snow, snow melt and streamflow dynamics over an alpine watershed. Journal of Hydrology 531: 574-588. https://doi.org/10.1016/j.jhydrol.2015.10.070.
16- Hasan M.A., and Pradhanang S.M. 2017. Estimation of flow regime for a spatially varied Himalayan watershed using improved multi-site calibration of the Soil and Water Assessment Tool (SWAT) model. Environmental Earth Sciences. Springer Berlin Heidelberg 76(23). https://doi.org/10.1007/s12665-017-7134-3.
17- Jalowska A.M., and Yuan Y. 2019. Evaluation of SWAT impoundment modeling methods in water and sediment simulations. JAWRA Journal of the American Water Resources Association 55(1): 209-227. https://doi.org/10.1111/1752-1688.12715.
18- Jeong J., Yang J., Han S., Seo Y.S., and Hong Y. 2020. Assessment of coupled hydrologic and biogeochemical Hg cycles in a temperate forestry watershed using SWAT-Hg. Environmental Modelling & Software 126: 104644. https://doi.org/10.1016/j.envsoft.2020.104644.
19- Kalra A., and Ahmad S. 2011. Evaluating changes and estimating seasonal precipitation for the Colorado River Basin using a stochastic nonparametric disaggregation technique. Water Resources Research 47(5): 1–26. https://doi.org/10.1029/2010WR009118.
20- Kheiri S., Solak C.N., Edlund M.B., Spaulding S., Nejadsattari T., Asri Y., and Hamdi S.M.M. 2018. Biodiversity of diatoms in the Karaj River in the Central Alborz, Iran. Diatom Research 33(3): 355–380. https://doi.org/10.1080/0269249X.2018.1557747.
21- Kulkarni A.V., Rathore B.P., Singh S.K., and Ajai. 2010. Distribution of seasonal snow cover in central and western Himalaya. Annals of Glaciology 51(54): 123–128. https://doi.org/10.3189/172756410791386445.
22- Lamba J., Thompson A.M., Karthikeyan K.G., Panuska J.C., and Good L.W. 2016. Effect of best management practice implementation on sediment and phosphorus load reductions at subwatershed and watershed scale using SWAT model. International Journal of Sediment Research 31(4): 386-394. https://doi.org/10.1016/j.ijsrc.2016.06.004.
23- Li X., and Williams M.W. 2008. Snowmelt runoff modelling in an arid mountain watershed, Tarim Basin, China. Hydrological Processes 22(19): 3931-3940. https://doi.org/10.1002/hyp.7098.
24- Liu R., Xu F., Zhang P., Yu W., and Men C. 2016. Identifying non-point source critical source areas based on multi-factors at a basin scale with SWAT. Journal of Hydrology 533: 379-388. https://doi.org/10.1016/j.jhydrol.2015.12.024.
25- Mengistu A.G., van Rensburg L.D., and Woyessa Y.E. 2019. Techniques for calibration and validation of SWAT model in data scarce arid and semi-arid catchments in South Africa. Journal of Hydrology: Regional Studies 25: 100621. https://doi.org/10.1016/j.ejrh.2019.100621.
26- Moriasi D.N., Arnold J.G., Van Liew M.W., Bingner R.L., Harmel R.D., and Veith TL. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE 50(3): 885-900. https://doi.org/10.13031/2013.23153.
27- Moriasi D.N., Gitau M.W., Pai N., and Daggupati P. 2015. Hydrologic and water quality models: Performance measures and evaluation criteria. Transactions of the ASABE 58(6): 1763–1785. https://doi.org/10.13031/trans.58.10715.
28- Nash J., and Sutcliffe I. 1970. River flow forecasting through conceptual models part I—A discussion of principles. Journal of Hydrology 10(3): 282–290. https://doi.org/10.1016/0022-1694(70)90255-6.
29- Navratil O., Esteves M., Legout C., Gratiot N., Nemery J., Willmore S., and Grangeon T. 2011. Global uncertainty analysis of suspended sediment monitoring using turbidimeter in a small mountainous river catchment. Journal of Hydrology 398(3-4): 246-259. https://doi.org/10.1016/j.jhydrol.2010.12.025.
30- Neitsch S.L. 2005. Soil and Water Assessment Tool. User’s Manual Version 2005 476.
31- Neitsch S.L., Arnold J.G., Kiniry J.R., and Williams J. 2011. Soil & Water Assessment Tool Theoretical Documentation Version 2009. Texas Water Resources Institute.
32- Niraula R., Kalin L., Srivastava P., and Anderson C.J. 2013. Identifying critical source areas of nonpoint source pollution with SWAT and GWLF. Ecological Modelling 268: 123-133. https://doi.org/10.1016/j.ecolmodel.2013.08.007.
33- Noor H., Vafakhah M., Taheriyoun M., and Moghadasi M. 2014. Hydrology modelling in Taleghan mountainous watershed using SWAT. Journal of Water and Land Development 20(1): 11–18. https://doi.org/10.2478/jwld-2014-0003.
34- Prasannakumar V., Vijith H., Abinod S., and Geetha N.J.G.F. 2012. Estimation of soil erosion risk within a small mountainous sub-watershed in Kerala, India, using Revised Universal Soil Loss Equation (RUSLE) and geo-information technology. Geoscience Frontiers 3(2): 209-215. https://doi.org/10.1016/j.gsf.2011.11.003.
35- Rahman K., Maringanti C., Beniston M., Widmer F., Abbaspour K., and Lehmann A. 2013. Streamflow Modeling in a Highly Managed Mountainous Glacier Watershed Using SWAT: The Upper Rhone River Watershed Case in Switzerland. Water Resources Management 27(2): 323–339. https://doi.org/10.1007/s11269-012-0188-9.
36- Rostamian R., Jaleh A., Afyuni M., Mousavi S., Heidarpour M., Jalalian A., and Abbaspour K. 2008. Application of a SWAT model for estimating runoff and sediment in two mountainous basins in central Iran Application of a SWAT model for estimating runoff and sediment in two mountainous basins in central Iran. Hydrological Sciences Journal 53(5): 977–988. https://doi.org/10.1623/hysj.53.5.977.
37- Singh V., and Goyal M.K. 2016. Analysis and trends of precipitation lapse rate and extreme indices over north Sikkim eastern Himalayas under CMIP5ESM-2M RCPs experiments. Atmospheric Research 167: 34-60. https://doi.org/10.1016/j.atmosres.2015.07.005.
38- Talebizadeh M., Morid S., Ayyoubzadeh S.A., and Ghasemzadeh M. 2010. Uncertainty analysis in sediment load modeling using ANN and SWAT model. Water Resources Management 24(9): 1747–1761. https://doi.org/10.1007/s11269-009-9522-2.
39- Viviroli D., Du HH., Messerli B., Meybeck M., and Weingartner R. 2007. Mountains of the world , water towers for humanity: Typology, Mapping, and Global Significance 43:1–13. https://doi.org/10.1029/2006WR005653.
40- Wang W., Xie Y., Bi M., Wang X., Lu Y., and Fan Z. 2018. Effects of best management practices on nitrogen load reduction in tea fields with different slope gradients using the SWAT model. Applied Geography 90: 200-213. https://doi.org/10.1016/j.apgeog.2017.08.020.
41- Williams J.R. 1975. Sediment routing for agricultural watersheds 1. JAWRA Journal of the American Water Resources Association 11(5): 965-974. https://doi.org/10.1111/j.1752-1688.1975.tb01817.x.
42- Wu F., Zhan J., Wang Z., and Zhang Q. 2015. Streamflow variation due to glacier melting and climate change in upstream Heihe River Basin, Northwest China. Physics and Chemistry of the Earth, Parts A/B/C 79: 11-19. https://doi.org/10.1016/j.pce.2014.08.002.
43- Wu L., Long T yu., Liu X., and Ma X. 2013. Modeling impacts of sediment delivery ratio and land management on adsorbed non-point source nitrogen and phosphorus load in a mountainous basin of the three Gorges reservoir area, China. Environmental Earth Sciences 70(3): 1405–1422. https://doi.org/10.1007/s12665-013-2227-0.
44- Zeiger S.J., and Hubbart J.A. 2016. A SWAT model validation of nested-scale contemporaneous stream flow, suspended sediment and nutrients from a multiple-land-use watershed of the central USA. Science of The Total Environment 572: 232-243. https://doi.org/10.1016/j.scitotenv.2016.07.178.
45- Zhang G., Su X., Ayantobo O.O., Feng K., and Guo J. 2021. Spatial interpolation of daily precipitation based on modified ADW method for gauge-scarce mountainous regions: A case study in the Shiyang River Basin. Atmospheric Research 247: 105167. https://doi.org/10.1016/j.atmosres.2020.105167.