- AdegokeO., and Carleton A.M. 2002. Relations between Soil Moisture and Satellite Vegetation Indices in the U.S. Corn Belt. Journal of Hydrometeorology 3: 395-405. https://doi.org/10.1175/1525-7541(2002)003%3c0395:RBSMAS%3e2.0.CO;2.
- Adnan, Merwade V., and Yu Z. 2016. Multi-objective calibration of a hydrologic model using spatially distributed remotely sensed / in-situ soil moisture. Journal of Hydrology 536: 192–207. https://doi.org/10.1016/j.jhydrol.2016.02.037.
- AghaKouchak 2014. A baseline probabilistic drought forecasting framework using Standardized Soil Moisture Index: Application to the 2012 United States drought. Hydrol. Earth Systematic Science 18(7): 2485–2492. https://doi.org/10.5194/hess-18-2485-2014,%202014.
- BokenK. 2005. Monitoring and Predicting Agricultural Drought: A Global Study. Oxford Univ. Press. New York. 496. https://doi.org/10.1093/oso/9780195162349.001.0001.
- Brocca, Ciabatta L., Massari C., Camici S., and Tarpanelli A. 2017. Soil moisture for hydrological applications: open questions and new opportunities. Water 9(2): 140. https://doi.org/10.3390/w9020140.
- Carrão, Russo S., Sepulcre-canto G., and Barbosa P. 2016. An empirical standardized soil moisture index for agricultural drought assessment from remotely sensed data, International Journal of Applied Earth Observation and Geoinformation. International Journal Apply Earth Obs Geoinf 48:74-84. https://doi.org/10.1016/j.jag.2015.06.011.
- Chen, Wen J., and Tian H. 2016. Representativeness of the ground observational sites and up-scaling of the point soil moisture measurements. Journal of Hydrology 533: 62–73. https://doi.org/10.1016/j.jhydrol.2015.11.032.
- Chen, and Wang L. 2018. Recent advance in earth observation big data for hydrology. Big Earth Data. 1–22. https://doi.org/10.1080/20964471.2018.1435072.
- De Jue D., and Owe M. 2014. AMSR2/GCOM-W1 surface soil moisture (LPRM) L3 1 day 25 km x 25 km ascending V001, Edited by Goddard Earth Sciences Data and Information Services Center (GES DISC) (Bill Teng). Goddard Earth Sciences Data and Information Services Center (GES DISC). Greenbelt. MD. USA. https://doi.org/10.5067/CGDEOBASZ178.
- Dostálová, Doubková M., Sabel D., Bauer-Marschallinger B., and Wagner W. 2014. Seven years of advanced synthetic aperture radar (ASAR) global monitoring (GM) of surface soil moisture over Africa. Remote Sens 6(8): 7683–7707. https://doi.org/10.3390/rs6087683.
- Entekhabi, Reichle R.H., Koster R.D., and Crow W.T. 2010. Performance metrics for soil moisture retrievals and application requirements. Journal Hydrometeorology 11(3): 832–840. https://doi.org/10.1175/2010JHM1223.1.
- Fang, and Lakshmi V. 2014. Soil moisture at watershed scale : Remote sensing techniques. Journal of Hydrology 516:2014: 258–272. https://doi.org/10.1016/j.jhydrol.2013.12.008.
- Fang, Lakshmi V., Bindlish R., Jackson T.J., Cash M., and Basara J. 2013. Passive Microwave Soil Moisture Downscaling Using Vegetation Index and Skin Surface Temperature. Vadose Zone Journal https://doi.org/10.2136/vzj2013.05.0089.
- Farokhi, Ansari H., and Faridhosseini A. 2019. Integration of retrievals of the AMSR2 sensor with MODIS products to estimate soil moisture at high resolution. Iranian Journal of Irrigation and Drainage 13(3): 687-698. (In Persian with English abstract)
- Fashaee, and Sanaei Nejad S.H. 2021. Downscaling Retrievals of the AMSR2 Passive Microwavee Soil Moisture Imagery to Farm Scale. Iranian Journal of Irrigation and Drainage 14(6): 1973–1983. (In Persian with English abstract). https://dorl.net/dor/20.1001.1.20087942.2021.14.6.28.9.
- Ghafari, Davari K., and Farid Hosseini A. 2020. Development of Improved Algorithms for Downscaling SMAP-Derived Soil Moisture Using Visible/Inferred satellite observations. Iranian Journal of Irrigation and Drainage 14(2): 650–660. (In Persian with English abstract)
- Jagdhuber, Konings A.G., McColl K.A., Alemohammad S.H., Das N.N., Montzka C., Link M., Akbar R., and Entekhabi D. 2019. Physics-Based Modeling of Active and Passive Microwave Covariations Over Vegetated Surfaces. IEEE Transactions on Geoscience and Remote Sensing. 57: 788-802. https://doi.org/10.1109/TGRS.2018.2860630.
- Kim, and Hogue T. 2012. Improving spatial soil moisture representation through integration of AMSR-E and MODIS products. IEEE Trans. Geosci. Remote Sens 50(2): 446–460. https://doi.org/10.1109/TGRS.2011.2161318.
- Kim, Liu Y.Y., Johnson F.M., Parinussa R.M., and Sharma A. 2015. A global comparison of alternate AMSR2 soil moisture products: Why do they differ?. Remote Sensing of Environment 161: 43–62. https://doi.org/10.1016/j.rse.2015.02.002.
- Martinez-Fernández, González Zomora A., Sánchez N., and Gumuzzio A. 2016. Remote Sensing of Environment Satellite soil moisture for agricultural drought monitoring: Assessment of the SMOS derived Soil Water De fi cit Index. Remote Sensing of Environment 177: 277–286. https://doi.org/10.1016/j.rse.2016.02.064.
- MladenovaE., Bolten J.D., Crow W., Sazib N., and Reynolds C. 2020. Agricultural Drought Monitoring via the Assimilation of SMAP Soil Moisture Retrievals Into a Global Soil Water Balance Model. Frontiers in Big Data 3: 10. https://doi.org/10.3389/fdata.2020.00010
- Modanesi, Massari C., Camici S., Brocca L., and Amarnath G. 2019. Do Satellite Surface Soil Moisture Observations Better Retain Information About Crop‐Yield Variability in Drought Conditions?. Water Resources Research 56(2). https://doi.org/10.1029/2019WR025855.
- MohantyP., Cosh M.H., Lakshmi V., and Montzka C. 2017. Soil moisture remote sensing: state-of-the-science. Vadose Zone Journal 16(1): 1–9. https://doi.org/10.2136/vzj2016.10.0105.
- Montzka, Bogena H.R., Zreda M., Monerris A., Morrison R., Muddu S., and Vereecken H. 2017. Validation of spaceborne and modelled surface soil moisture products with cosmic-ray neutron probes. Remote Sens 9(2): 103–136. https://doi.org/10.3390/rs9020103.
- Niazi, Talebi A., Mokhtari M.H., and Vazifedoust M. 2018. Presenting a soil moisture-based drought index derived from Global Land Data Assimilation System (GLDAS-SMDI) in central Iran. Scientific Research Quarterly of Geographical Data (SEPEHR) 27(107): 179–191. http://doi.org/10.22131/SEPEHR.2018.33574.
- NOAA Office of Satellite and Product Operation (OSPO) website, About AMSR-2, https://www.ospo.noaa.gov/Products/atmosphere/gpds/about_amsr2.html. Date of Visit: 2020-05-13.
- Paredes-trejo , and Barbosa H. 2017. Evaluation of the SMOS-Derived Soil Water Deficit Index as Agricultural Drought Index in Northeast of Brazil. https://doi.org/10.3390/w9060377.
- Peng, and Loew A. 2017. Recent advances in soil moisture estimation from remote sensing. Water 9(7): 530–534. https://doi.org/10.3390/w9070530.
- Saha, Patil M., Goyal V., and Rathore DS. 2018. Evaluation W. Assessment and Impact of Soil Moisture Index in Agricultural Drought Estimation Using Remote Sensing and GIS Techniques. 3rd International Electronic Conference on Water Sciences (ECWS-3), 2018; (November). https://doi.org/10.3390/ECWS-3-05802.
- Sánchez, González-zamora Á., Piles M., and Martínez-fernández J. 2016. SMADI Integrating MODIS and SMOS Products: A Case of Study over the Iberian Peninsula. https://doi.org/10.3390/rs8040287.
- Sur, Park S., Kim T., and Lee J. 2019. Remote Sensing-based Agricultural Drought Monitoring using Hydrometeorological Variables. KSCE Journal of Civil Engineering 23: 5244–5256. https://doi.org/10.1007/978-3-319-43744-6_7.
- Takada, Mishima Y., and Natsume S. 2009. Estimation of surface soil properties in peatland using ALOS/PALSAR. Landscape Ecology Engineering 5(1): 45–58. http://dx.doi.org/10.1007/s11355-008-0061-4.
- Velayati 2000. The most important factors affecting the qualitative changes of Neishabour plain aquifer. Geographical Researches Journal 149: 119-134. (In Persian)
- WilhiteA. 2005. Drought and Water Crises: Science, Technology, and Management Issues. CRC Press 86: 432. https://doi.org/10.1201/9781420028386.
- Wang, and Qu J.J. 2009. Satellite remote sensing applications for surface soil moisture monitoring: A review. Front. Earth Science Chin 3(2): 237–247. https://doi.org/10.1007/s11707-009-0023-7.
- Wang, Ling Z., Wang Y., and Zeng H. 2016. ISPRS Journal of Photogrammetry and Remote Sensing Improving spatial representation of soil moisture by integration of microwave observations and the temperature–vegetation–drought index derived from MODIS products. ISPRS Journal of Photogrammetry and Remote Sensing 113: 144–154. https://doi.org/10.1016/j.isprsjprs.2016.01.009.
- Zhang, Li Z.L., Tang R., Tang B.H., and Wu H. 2014. A remote sensing technique to determine the soil moisture saturation index. Institute of Geographic Sciences and Natural Resources Research 978-1-4799-5775-0/14. 3280. https://doi.org/10.1109/IGARSS.2014.6947180.
- Zhu, Luo Y., Xu Y., Tian Y., and Yang T. 2019. Satellite Soil Moisture for Agricultural Drought Monitoring: Assessment of SMAP-Derived Soil Water Deficit Index in Xiang River Basin. Remote Sensing 11(3): 362. https://doi.org/10.3390/rs11030362.
|