تعداد نشریات | 49 |
تعداد شمارهها | 1,777 |
تعداد مقالات | 18,924 |
تعداد مشاهده مقاله | 7,755,189 |
تعداد دریافت فایل اصل مقاله | 5,024,435 |
An improvised technique of quintic hermite splines to discretize generalized Burgers–Huxley type equations | ||
Iranian Journal of Numerical Analysis and Optimization | ||
مقاله 16، دوره 13، شماره 1 - شماره پیاپی 24، خرداد 2023، صفحه 59-79 اصل مقاله (748.21 K) | ||
نوع مقاله: Research Article | ||
شناسه دیجیتال (DOI): 10.22067/ijnao.2022.75871.1120 | ||
نویسندگان | ||
I. Kaur1؛ S. Arora ![]() | ||
1Chitkara University Institute of Engineering and Technology, Department of Applied Sciences, Chitkara University, Patiala, Punjab, INDIA. | ||
2Department of Mathematics, Punjabi University, Patiala, Punjab-147002, INDIA. | ||
چکیده | ||
A mathematical collocation solution for generalized Burgers–Huxley and generalized Burgers–Fisher equations has been monitored using the weighted residual method with Hermite splines. In the space direction, quintic Hermite splines are introduced, while the time direction is dis-cretized using a finite difference approach. The technique is determined to be unconditionally stable, with order (h4 + △t) convergence. The tech-nique’s efficacy is tested using nonlinear partial differential equations. Two problems of the generalized Burgers–Huxley and Burgers–Fisher equations have been solved using a finite difference scheme as well as the quin-tic Hermite collocation method (FDQHCM) with varying impacts. The FDQHCM computer codes are written in MATLAB without transforming the nonlinear term to a linear term. The numerical findings are reported in weighted norms and in discrete form. To assess the technique’s appli-cability, numerical and exact values are compared, and a reasonably good agreement is recognized between the two. | ||
کلیدواژهها | ||
Quintic Hermite splines؛ Forward finite difference scheme؛ col-location method؛ stability analysis | ||
مراجع | ||
[1] Alharbi, A. and Fahmy, E.S. ADM-Pade solutions for generalized Burg-ers and Burgers–Huxley systems with two coupled equations, J. Comput. Appl. Math. 233 (2010) 2071–2080. [4] Arora, S. and Kaur, I. An efficient scheme for numerical solution of burgers′ equation using quintic Hermite interpolating polynomials, Arab. J. Math. 5 (2016) 23–34. [5] Arora, S. and Kaur, I. Applications of quintic Hermite collocation with time discretization to singularly perturbed problems, Appl. Math. Com-put. 316 (2018) 409–421. [6] Arora, S., Kaur, I., Kumar, H. and Kukreja, V.K. A robust technique of cubic Hermite collocation for solution of two phase nonlinear model, J. King Saud Univ. Eng. Sci. 29 (2017) 159–165. [8] Celik, I. Haar wavelet method for solving generalized Burgers-Huxley equation, Arab J. Math. Sci. 18 (2012) 25–37. [9] Chabani, I., Mebarek Oudina, F. and Ismail, A.I. MHD flow of a Hybrid nano-fluid in a triangular enclosure with zigzags and an elliptic obstacle. Micromachines, 13 (2022) 224. [10] Djebali, R., Mebarek-Oudina, F. and Choudhari, R. Similarity solution analysis of dynamic and thermal boundary layers: Further formulation along a vertical flat plate. Phys. Scr. 96 (2021) 085206. [12] Hall, C. On error bounds for spline interpolation, J. Approx. Theory. 1 (1968) 209–218. [14] Inan, B. and Bahadir, A. R. Numerical solution of the generalized Burg-ers Huxley equation by implicit exponential finite difference method, J. Appl. Math. Inform. 11 (2015), 57–67. [15] Ismail, H.N.A., Raslan, K. and Rabboh, A.A.A. Adomain-decomposition method for Burger′s Huxley and Burger′s Fisher equations, Appl. Numer. Math. 159 (2004) 291–301. [16] Javidi, M. A numerical solution of the generalized Burgers-Huxley equa-tion by spectral collocation method, Appl. Math. Comput. 178 (2006) 338–344. [17] Kushner, A.G. and Matviychuk, R.I. Finite dimensional dynamics and exact solutions of Burgers-Huxley-equation, Twelfth International Con-ference ”Management of large scale system development”, Moscow, Rus-sia,(2019) 1–3. [18] Marzougui, S., Mebarek-Oudina, F., Mchirgui, A. and Magherbi, M. Entropy generation and heat transport of Cu-water nanoliquid in porous lid-driven cavity through magnetic field. Int. J. Numer. Methods Heat Fluid Flow, (2021). [19] Miller, J.J.H., O′Riordan, R.E. and Shishkin, G. I. Fitted numerical methods for singular perturbation problems, World Scientific, Singapore, 1996. [20] Rathish Kumar, B. V., Vivek, S., Murthy, S.V.S.S.N.V.G.K. and Nigam, M. A numerical study of singularly perturbed generalized Burgers–Huxley equation using three-step Taylor–Galerkin method, Comput. Math. Appl. 62 (2011) 776–786. [21] Saha Ray, S. and Gupta, A.K. On the solution of Burgers-Huxley and Huxley equation using wavelet collocation method, Comput. Model. Eng. Sci. 91 (2013) 409–424. [22] Sari, M., Gurarslan, G. and Dag, I. A compact finite difference method for the solution of the generalized Burgers-Fisher equation, Numer. Methods Partial Differ. Equ. 26 (2009) 125–134. [23] Sari, M., Gurarslan, G. and Zeytinoglu, A. High-order finite difference schemes for numerical solutions of the generalized Burger-Huxley equa-tion, Numer. Methods Partial Differ. Equ. 27 (2011) 1313–1326. [24] Tersenov, A.S. On the generalized Burgers equation, Nonlinear Differ. Equ. Appl. 17 (2010) 437–452. | ||
آمار تعداد مشاهده مقاله: 243 تعداد دریافت فایل اصل مقاله: 170 |