- Aldabaa A., Weindorf D.C., Chakraborty S., Sharma A., and Li B. 2015. Combination of proximal and remote sensing methods for rapid soil salinity quantification. Geoderma 34(46): 229–240. https://doi.org/10.1016/j.geoderma.2014.09.011.
- Bilgili A., van Es H., Akbas F., and Durak A. 2010. Visible-near infrared reflectance spectroscopy for assessment of soil properties in a semi-arid area of Turkey. Arid Environments 74(2): 229-238. https://doi.org./10.1016/j.jaridenv.2009.08.011.
- Bouyoucos G.J. 1951. A recalibration of hydrometer method for making mechanical analysis of soil. Agronomy 43: 434- https://doi.org/10.2134/agronj1951.00021962004300090005x.
- Clark R.N. 1999. Spectroscopy of rocks and minerals, principles of spectroscopy. John Wiley and Sons.
- Gras J.P., Barthès B.G. Mahaut B., and Trupin. S. 2014. Best practices for obtaining and processing field visible and near infrared (VNIR) spectra of topsoil. Geoderma 215: 126–134. https://doi.org/10.1016/j.geoderma.2013.09.021.
- Guerrero C., Viscarra Rossel R.A., and Mouazen A.M. 2010. Diffuse reflectance spectroscopy in soil science and land resource assessment. Geoderma 158: 1-2. https://doi.org/10.1016/j.geoderma.2010.05.008.
- Hassani A., Bahrami H.A., Noroozi A.A., and Oustan Sh. 2014. Visible-near infrared reflectance spectroscopy for assessment of soil properties in gypseous and calcareous soils. Watershed Engineering and Management 6(2): 125-138. (In Persian with English abstract) https://doi.org/10.22092/IJWMSE.2014.101721.
- Hong Y., Chen S., Zhang Y., Chen Y., Yu L., Liu Y., and Cheng H. 2018. Rapid identification of soil organic matter level via visible and near-infrared spectroscopy: Effects of two-dimensional correlation coefficient and extreme learning machine. Science of the Total Environment 644: 1232–1243. https://doi.org/10.1016/j.scitotenv.2018.06.319.
- Islam K., Singh B., and McBratney A. 2003. Simultaneous estimation of several soil properties by ultraviolet, visible and nearinfrared reflectance spectroscopy. Australian Journal of Soil Research 41: 1193–1202. https://doi.org/10.1071/SR02137.
- Jalalian A. 1997. The studies of lands resources and capability determination in Semirom area. The Ministry of Jahad Sazandegi, Isfahan Province. (In Persian)
- Janik L.J., Forrester S.T., and Rawson A. 2009. The prediction of soil chemical and physical properties from mid-infrared spectroscopy and combined partial least-squares regression and neural networks (PLS-NN) analysis. Chemometrics and Intelligent Laboratory Systems 97(2): 179-188. https://doi.org/10.1016/j.chemolab.2009.04.005.
- Khayamim, Khademi H., Stenberg B., and Wetterlind J. 2015. Capability of vis-NIR Spectroscopy to Predict Selected Chemical Soil Properties in Isfahan Province. Isfahan University of Technology 19(72): 81-92. (In Persian with English abstract). https://doi.org/10.18869/acadpub.jstnar.19.72.8.
- Knadel M., Deng F., Alinejadian A., de Jonge L.W., Møldrup P., and Greve M.H. 2013. Moisture effects on visible-near infrared soil spectra-from wet to hyper dry. P. 422-433. In ASA, CSSA, and SSSA, -6 Nov. 2013. International Annual Meetings, Florida, United States of America. https://doi.org/10.2136/sssaj2012.0401.
- Kuśnierek 2011. Pre-processing of soil visible and near infrared spectra taken in laboratory and field conditions to improve the within-field soil organic carbon multivariate calibration. p. 100-103. The 2th Global Workshop on Proximal Soil Sensing, 15-18 May. 2011. Montreal, Canada.
- Lanyon L.E., and Heald W.R. 1982. Magnesium, calcium, strontium and barium. P. 247-260. In: A. L., Page et al. (ed.), Methods of Soil Analysis. Part2, Agron. Monogr. ASA and SSSA, Madison, WI. https://doi.org/10.2134/agronmonogr9.2.2ed.c14.
- Minasny B., and McBratney A.B. 2006. A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers and Geosciences 32(9): 1378-1388. https://doi.org/10.1016/j.cageo.2005.12.009.
- Nawar, Buddenbaum H., Hill J., Kozak J., and Mouazen A. 2016. Estimating the soil clay content and organic matter by means of different calibration methods of vis-NIR diffuse reflectance spectroscopy. Soil and Tillage Research 155: 510-522. https://doi.org/10.1016/j.still.2015.07.021.
- Ostovari, Ghorbani-Dashtaki S., Bahrami H.A., Abbasi M., Dematte J.A.M., Arthur, E., and Panagos P. 2018. Towards prediction of soil erodibility, SOM and CaCO3 using laboratory Vis-NIR spectra: A case study in a semi-arid region of Iran. Geoderma 314: 102-112. https://doi.org/10.1016/j.geoderma.2017.11.014.
- Rasooli N., Farpoor M., Khayamim F., and Ranjbar H. 2018. Prediction of selected soil properties using visible and near infrared spectroscopy in Bardsir area, Kerman Province. Iranian Journal of Soil Research 32(2): 231-243. (In Persian with English abstract). https://doi.org/10.22092/IJSR.2018.117044.
- Reeves, McCarty G., and Mimmo T. 2002. The potential of diffuse reflectance spectroscopy for the determination of carbon inventories in soils. Environmental Pollution 116: 277–284. https://doi.org/10.1016/S0269-7491(01)00259-7.
- Reeves, and Smith D.B. 2009. The potential of mid-and near-infrared diffuse reflectance spectroscopy for determining major-and trace-element concentrations in soils from a geochemical survey of North America. Applied Geochemistry 24(8): 1472-1481. https://doi.org/10.1016/j.apgeochem.2009.04.017.
- Richards L.A. 1954. Diagnosis and Improvement of Saline-Alkali Soils. US Department of Agriculture, Washington DC.
- SargentJ. 2001. Comparison of artificial neural networks with other statistical approaches: results from medical data sets. Cancer 91: 1636-42. https://doi.org/10.1002/1097-0142(20010415)91:8+<1636::AID-CNCR1176>3.0.CO;2-D.
- Savitzky, and Golay M.J. 1964. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry 36: 1627-1639. https://doi.org/10.1021/ac60214a047.
- Seifi, Ahmadi A., Neyshabouri M.R., Taghizadeh-Mehrjardi R., and Bahrami H.A. 2020. Remote and Vis-NIR spectra sensing potential for soil salinization estimation in the eastern coast of Urmia hyper saline lake, Iran. Remote Sensing Applications: Society and Environment 20: 100398. https://doi.org/10.1016/j.rsase.2020.100398.
- Shiferaw, and Hergarten Ch. 2014. Visible near infra-red (Vis-NIR) spectroscopy for predicting soil organic carbon in Ethiopia. Ecology and Natural Environent 6: 126-139. https://doi.org/10.5897/JENE2013.0374.
- Summers, Lewis M., Ostendorf B., and Chittleborough D. 2011. Visible near-infrared reflectance spectroscopy as a predictive indicator of soil properties. Ecological. Indicators 11: 123-131. https://doi.org/10.1016/j.ecolind.2009.05.001.
- Stenberg B., Jonsson A., and Börjesson T. 2002. Near infrared technology for soil analysis with implications for precision agriculture. In Near Infrared Spectroscopy. p. 279-284. Proceedings of the 10th International Conference. NIR Publications, 2002. Chichester, UK, Kyongju S. KA.
- TerraS., Demattê J.A.M., and Viscarra Rossel R.A. 2015. Spectral libraries for quantitative analyses of tropical Brazilian soils: comparing Vis–NIR and mid-IR reflectance data. Geoderma 255–256: 81–93. https://doi.org/10.1016/j.geoderma.2015.04.017.
- Vapnik, and Vapnik V. 1998. Statistical learning theory. John Wiley and Sons.
- Viscarra RosselA., McGlynn R., and McBratney A. 2006. Determining the composition of mineral-organic mixes using UV–vis–NIR diffuse reflectance spectroscopy. Geoderma 137(1-2): 70-82. https://doi.org/10.1016/j.geoderma.2006.07.004.
- Viscarra Rossel R.A., Walvoort D.J.J., McBratney A.B., Janik L.J., and Skjemstad J.O. 2006. Visible, near infrared, midinfrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 131: 59–75. https://doi.org/10.1016/j.geoderma.2005.03.007.
- Viscarra Rossel R.A., Cattle S.R., Ortega A., and Fouad Y. 2009. In situ measurements of soil colour, mineral composition and clay content by Vis–NIR spectroscopy. Geoderma 150: 253–266. https://doi.org/10.1016/j.geoderma.2009.01.025.
- Viscarra Rossel R., and Behrens T. 2010. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 158: 46–54. https://doi.org/10.1016/j.geoderma.2009.12.025.
- Walkley A., and Black I.A. 1934. An examination of the Degtjareff method for determining organic carbon in soils: effect of variations in digestion conditions and of inorganic soil constituents. Soil Science 63: 251-263. https://doi.org/10.1097/00010694-194704000-00001.
- Wang , Ding J., Abulimiti A., and Cai L. 2018. Quantitative estimation of soil salinity by means of different modeling methods and visible-near infrared (VIS–NIR) spectroscopy, Ebinur Lake Wetland, Northwest China. PeerJ, 6: e4703. https://doi.org/10.7717/peerj.4703.
- Wilding 1985. Soil Spatial variability: Its documentation, accommodation, and implication to soil surveys. p. 166-194. In Soil Spatial Variability. D.R. Nielson and J. Bouma (ed.), Pudo. 1985. Wagenigen,NL.
- Wold, Sjostrom M., and Eriksson L. 2001. PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratoary Systems 58: 109–130. https://doi.org/10.1016/S0169-7439(01)00155-1.
|