- Ali, A.Y.A., Ibrahim, M.E.H., Zhou, G., Elsiddig, A.M.I., Jiao, X., Zhu, G., & Gabralla, E. (2021). Humic acid and jasmonic acid improves the growth and antioxidant defense system in salt stressed-forage sorghum plants. Research Journal Agriculture Biotechnology Science, 22, 771-782. https://doi.org/10.21203/rs.3.rs-490134/v1 .
- Azami-Atajan, F., Hammami, H., & Yaghoubzadeh, M. (2020). The application of plant growth promoting microorganisms and phosphate fertilizers on yield, yield components and water use efficiency of wheat at levels of irrigation water. Journal of Crop Production, 12(4), 1-24. (In Persian). DOI: 10.22069/EJCP.2020.17166.2268
- Baldotto, L.E.B., Baldotto, M.A., Giro, V.B., Canellas, L.P., Olivares, F.L., & Bressan-Smith, B. (2009). Performance of ‘vitória’ pineapple in response to humic acid application during acclimatization. Revista Brasileira de Ciência do Solo, 33, 979-990.
- Canellas, L.P., & Olivares, F.L. (2014). Physiological responses to humic substances as plant growth promoter. Chemical and Biological Technologies in Agriculture, 1, 3. https://doi.org/10.1186/2196-5641-1-3 .
- De Hita, D., Fuentes, M., Zamarreno, A.M., Ruiz, Y., & Garcia-Mina, J.M. (2020). Culturable bacterial endophytes from sedimentary humic acid-treated plants. Frontiers in Plant Science, 11, 837. https://doi.org/10.3389/fpls.2020.00837 .
- Dehsheikh, A.B., Sourestani, M.M., Zolfaghari, M., & Enayatizamir, N. (2020). Changes in soil microbial activity, essential oil quantity, and quality of Thai basil as response to biofertilizers and humic acid. Journal of Cleaner Production, 256, 120439. https://doi.org/10.1016/j.jclepro.2020.120439 .
- El-Sheshtawy, A.A., Hager, M.A., & Shawer, S.S. (2019). Effect of bio-fertilizer, phosphorus source and humic substances on yield, yield components and nutrients uptake by barley plant. Journal of Biological Chemistry and Environmental Sciences, 14, 279-300.
- Ghaly, F.A., Abd-Elhamied, A.S., & Shalaby, N.S. (2020). Effect of bio-fertilizer, organic and mineral fertilizers on soybean yield and nutrients uptake under sandy soil conditions. Journal of Soil Sciences and Agricultural Engineering, 11(11), 653-660. DOI: 10.21608/jssae.2020.135739 .
- Ghasemi, E., Tavakoli, M.R., & Zabihi, H.R. (2012). The effect of nitrogen, potassium and humic acid on vegetative growth, uptake of nitrogen and potassium in potato mini-tubers under greenhouse conditions. Journal of Agriculture and Plant Breeding, 8(1), 56-39.
- Quaggiotti, S., Ruperti, B., Pizzeghello, D., Francioso, O., Tugnoli, V., & Nardi, S. (2004). Effect of low molecular size humic substances on nitrate uptake and expression of genes involved in nitrate transport in maize (Zea mays). Journal of Experimental Botany, 55(398), 803-13. DOI: 10.1093/jxb/erh085 .
- Hassan, W., Bashir, S., Hanif, S., Sher, A., Sattar, A., Wasaya, A., & Hussain, M. (2017). Phosphorus solubilizing bacteria and growth and productivity of mung bean (Vigna radiata). Pakistan Journal of Botany, 49(3), 331-336.
- Jindo, K., Canellas, L.P., Albacete, A., Figueiredo dos Santos, L., Frinhani Rocha, R.L., Carvalho Baia, D., & Olivares, F.L. (2020). Interaction between humic substances and plant hormones for phosphorous acquisition. Agronomy, 10(5), 640. https://doi.org/10.3390/agronomy10050640 .
- Khan, B.A., Hussain, A., Elahi, A., Adnan, M., Amin, M.M., Toor, M.D. & Ahmad, R. (2020). Effect of phosphorus on growth, yield and quality of soybean (Glycine max); A review. International Journal of Applied Research, 6(7), 540-545.
- Lingaraju, N.N., Hunshal, C.S., & Salakinkop, S.R. (2016). Effect of biofertilizers and foliar application of organic acids on yield, nutrient uptake and soil microbial activity in soybean. Legume Research, 39(2), 123-134. DOI: 10.18805/lr.v0iOF.6784 .
- Liu, J., Qi, W., Li, Q., Wang, S.G., Song, C., & Yuan, X.Z. (2020). Exogenous phosphorus-solubilizing bacteria changed the rhizosphere microbial community indirectly. 3 Biotech, 10(4), 1-11. DOI: 10.1007/s13205-020-2099-4 .
- Lombardo, M.C., & Lamattina, L. (2012). Nitric oxide is essential for vesicle formation and trafficking in arabidopsis root hair growth. Journal of Experimental Botany, 63, 4875-4885. https://doi.org/10.1093/jxb/ers166 .
- Lusiba, S., Odhiambo, J., & Ogola, J. (2018). Growth, yield and water use efficiency of chickpea (Cicer arietinum): response to biochar and phosphorus fertilizer application. Archives of Agronomy and Soil Science, 64(6), 819-833. DOI: 10.1080/03650340.2017.1407027 .
- Maes, Sh., De Reu, K., Van Weyenberg, S., Lories, B., Heyndrickx, M., & Steenackers, H. (2020). Pseudomonas putida as a potential biocontrol agent against Salmonella Java biofilm formation in the drinking water system of broiler houses. BMC Microbiology, 20, 373. https://doi.org/10.1186/s12866-020-02046-5.
- Mahmood, Y.A., Ahmed, F.W., Mohammed, I.Q., & Wheib, K.A. (2020). Effect of organic, mineral fertilizers and foliar application of humic acid on growth and yield of corn (Zea mays). Indian Journal of Ecology, 47(10), 39-44.
- Malakouti, M.J. (2014). Optimal Fertilizer Use Recommendation for Agricultural Products in Iran. Mobaleghan Press, 318 p. ISBN: 9789642614950.
- Manzoor, S., Rasheed, M., Jilani, G., Ullah, M.A., Hussain, S.S., Asadullah, M., & Shaheer, G. (2021). Integration of phosphate solubilising bacteria, sulphur oxidizing bacteria with NPK on maize (Zea mays). Pakistan Journal of Scientific and Industrial Research Series B: Biological Sciences, 64(1), 43-48. DOI: 10.52763/PJSIR.BIOL.SCI.64.1.2021.43.48 .
- Matuszak-Slamani, R., Bejger, R., Ciesla, J., Bieganowski, A., Koczanska, M., Gawlik, A., & Golębiowska, D. (2017). Influence of humic acid molecular fractions on growth and development of soybean seedlings under salt stress. Plant Growth Regulation, 83(3), 465-477. DOI: 10.1007/s10725-017-0312-1.
- Mazaheri,, & Majnon Hoseini, N. (2001). Fundamental of Agronomy. Tehran University Press, 320 p. (In Persian)
- Mohammadi, G.R., Chatrnour, S., Jalali-honarmand, S., & Kahrizi, D. (2015). The effects of planting arrangement and phosphate biofertilizer on soybean under different weed interference periods. Acta Agriculturae Slovenica, 105(2), 313-322. DOI: 10.14720/aas.2015.105.2.14.
- Nadir, B., Muhammad, Y., Wajid, P. A., Shah, F., Bashir, U., Ghulam, Q., & Ahmed, Z.I. (2014). Integrated effect of phosphate solubilizing bacteria and humic acid on physiomorphic attributes of maize. International Journal of Current Microbiology and Applied Sciences, 3(6), 549-554.
- Narula, N., Kumar, V., Bel, R.K., Deubel, A., Gransee, A., & Merbach, W. (2000). Effect of P-solubilizing Azotobacter chroococcum on N, P and K uptake in P-responsive wheat genotypes grown under greenhouse conditions. Journal of Plant Nutrition, 163, 393-398. https://doi.org/10.1002/1522-2624 .
- Niazy, M., Khafagy, H., & Helal, R. (2016). Phosphorus efficiency in wheat as affected by foliar spray with zinc, humic acid and biofertilizer (Bacillus megatherium) addition under calcareous soil conditions. Journal of Soil Sciences and Agricultural Engineering, 7(8), 529-539. DOI: 10.21608/JSSAE.2016.39767.
- Parvizi, Y., & Nabati, E. (2004). The effect of irrigation cycle and livestock manure on water use efficiency and quantitative and qualitative yield of grain corn. Journal of Research and Construction, 63, 21-29.
- Quaggiotti, S., Ruperti B., Pizzeghello, D., Francioso, O., Tugnoli, & V., Nardi, S. (2004). Effect of low molecular size humic substances on nitrate uptake and expression of genes involved in nitrate transport in maize (Zea mays). Journal of Experimental Botany, 55(398), 803-813.
- Sadeghi, F., & Aboutalebian, M.A. (2019). Response of seed and oil yields and phosphorus agronomic efficiency of soybean to simultaneous placement of nitrogen with phosphorus under drought stress. Journal of Crop Production and Processing, 9, 191-204. (In Persian). DOI: 10.47176/jcpp.9.3.26305.
- Sarwar, M., Hyder, S.I., Akhtar, M.E., Tabassam, T., & Malik, S.R. (2014). Integrated effects of humic acid and biofertilizer on yield and phosphorus use efficiency in mungbean under rainfed condition. World Journal of Agricultural Sciences, 2(3), 040-046.
- Siswana, S.R., Sembiring, M., & Hanum, H. (2019). The effect of phosphate solubilizing microbes and chicken manure in increasing the P availability and growth of green beans (Phaseolus radiatus) on Andisol. In IOP Conference Series: Earth and Environmental Science, 260(1), 012160. IOP Publishing. DOI: 10.1088/1755-1315/260/1/012160.
- Turuko, M., & Mohammed, A. (2014). Effect of different phosphorus fertilizer rates on growth, dry matter yield and yield components of common bean (Phaseolus vulgaris). World Journal of Agricultural Research, 2(3), 88-92. DOI: 10.12691/wjar-2-3-1.
- Winarso, S., Sulistyanto, D., & Eko, H. (2017). Effects of humic compounds and phosphate-solubilizing bacteria on phosphorus availability in an acid soil. Journal of Ecology and the Natural Environment, 3(7), 232-240.
- Yousefi, A., Mirzaeitalarposhti, R., Aghamir, F.S., & Nabati, J. (2020). Effect of nitrogen fixating, potassium and phosphorus solubilizing bacteria on mungbean (Vigna radiata) yield and components yield. Environmental Sciences, 18(3), 1-14. https://doi.org/10.29252/envs.18.3.1.
- Zaki, N.M., Hassanein, A.G.A.M., & Mohamed, M.H. (2017). Effect of organic and bio-fertilizer on yield and some chemical composition of two peanut cultivars under newly reclaimed sandy soil condition. Middle East Journal of Applied Sciences, 7(4), 937-943.
- Zandonadi, D.B., Canellas, L.P., & Façanha, A.R. (2007). Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H+pumps activation. Planta, 225, 1583-1595. DOI: 10.1007/s00425-006-0454-2.
|