- Zhao, S., et al., "Wound dressings composed of copper-doped borate bioactive glass microfibers stimulate angiogenesis and heal full-thickness skin defects in a rodent model", Biomaterials, Vol. 53, pp. 379-391, (2015).
- Rizwan, M., Hamdi, M., Basirun, W. J., Kondoh, K., and Umeda, J., "Low pressure spark plasma sintered hydroxyapatite and Bioglass® composite scaffolds for bone tissue repair", Ceramics International, Vol. 44, pp. 23052-23062, No. 18, (2018).
- Bellucci, D., et al., "Bioglass and bioceramic composites processed by Spark Plasma Sintering (SPS): Biological evaluation Versus SBF test", Biomedical Glasses, Vol. 4, pp. 21-31, No. 1, (2018).
- Canillas, M., Pena, P., De Aza, A. H., and Rodríguez, M. A., "Calcium phosphates for biomedical applications", Boletin de la Sociedad Espanola de Ceramica y Vidrio, Vol. 56, pp. 91-112, No. 3. (2017).
- Yaszemski, M. J., Payne, R. G., Hayes, W. C., Langer, R., and Mikos, A. G., "Evolution of bone transplantation: Molecular, cellular and tissue strategies to engineer human bone", Biomaterials, Vol. 17, pp. 175-185, No. 2, (1996).
- Spivak, J. M., and Hasharoni, A., "Use of hydroxyapatite in spine surgery", European Spine Journal, Vol. 10, pp. S197-S204, No. SUPPL. 2, (2001).
- Bellucci, D., Desogus, L., Montinaro, S., Orrù, R., Cao, G., and Cannillo, V., "Innovative hydroxyapatite/bioactive glass composites processed by spark plasma sintering for bone tissue repair", J Eur Ceram Soc, Vol. 37, No. 4, pp. 1723-1733, (2017).
- Burg, K. J. L., Porter, S., and Kellam, J. F., "Biomaterial developments for bone tissue engineering", Biomaterials, Vol. 21, No. 23, pp. 2347-2359, (2000).
- Mollazadeh, S., Javadpour, J., and Khavandi, A., "In situ synthesis and characterization of nano-size hydroxyapatite in poly(vinyl alcohol) matrix", Ceramics International, Vol. 33, No. 8, pp. 1579-1583, (2007).
- Tampieri, A., Celotti, G., Szontagh, F., and Landi, E., "Sintering and characterization of HA and TCP bioceramics with control of their strength and phase purity", Journal of Materials Science: Materials in Medicine, Vol. 8, No. 1, pp. 29-37, (1997).
- Bellucci, D., Sola, A., and Cannillo, V., "Hydroxyapatite and tricalcium phosphate composites with bioactive glass as second phase: State of the art and current applications", Journal of Biomedical Materials Research - Part A, Vol. 104, No. 4, pp. 1030-1056, (2016).
- Liao, C. J., Lin, F. H., Chen, K. S., and Sun, J. S., "Thermal decomposition and reconstitution of hydroxyapatite in air atmosphere", Biomaterials, Vol. 20, No. 19, pp. 1807-1813, (1999).
- Liu, Y., and Shen, Z., "Dehydroxylation of hydroxyapatite in dense bulk ceramics sintered by spark plasma sintering", J Eur Ceram Soc, Vol. 32, No. 11, pp. 2691-2696, (2012).
- Gerhardt, L. C., and Boccaccini, A. R., "Bioactive glass and glass-ceramic scaffolds for bone tissue engineering", Materials, Vol. 3, No. 7, pp. 3867-3910, (2010).
- Hench, L. L., "The story of Bioglass®", in Journal of Materials Science: Materials in Medicine, Vol. 17, No. 11, pp. 967-978, (2006).
- Schuhladen, K., Wang, X., Hupa, L., and Boccaccini, A. R., "Dissolution of borate and borosilicate bioactive glasses and the influence of ion (Zn, Cu) doping in different solutions", Journal of Non-Crystalline Solids, Vol. 502, pp. 22-34, (2018).
- Brown, R. F., et al., "Effect of borate glass composition on its conversion to hydroxyapatite and on the proliferation of MC3T3-E1 cells", Journal of Biomedical Materials Research - Part A, Vol. 88, No. 2, pp. 392-400, (2009).
- Zhou, J., et al., "In vivo and in vitro studies of borate based glass micro-fibers for dermal repairing", Materials Science and Engineering C, Vol. 60, pp. 437-445, (2016).
- Huang, W., Day, D. E., Kittiratanapiboon, K., and Rahaman, M. N., "Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions", Journal of Materials Science: Materials in Medicine, Vol. 17, No. 7, pp. 583–596, (2006).
- Balasubramanian, P., Hupa, L., Jokic, B., Detsch, R., Grünewald, A., and Boccaccini, A. R., "Angiogenic potential of boron-containing bioactive glasses: in vitro study", Journal of Materials Science, Vol. 52, No. 15, pp. 8785-8792, (2017).
- Balasubramanian, P., et al., "Ion Release, Hydroxyapatite Conversion, and Cytotoxicity of Boron-Containing Bioactive Glass Scaffolds", International Journal of Applied Glass Science, Vol. 7, No. 2, pp. 206-215, (2016).
- Guo, X., Xiao, P., Liu, J., and Shen, Z., "Fabrication of nanostructured hydroxyapatite via hydrothermal synthesis and spark plasma sintering", Journal of the American Ceramic Society, Vol. 88, No. 4, pp. 1026–1029, (2005).
- Ali, A., et al., "Studies on effect of CuO addition on mechanical properties and in vitro cytocompatibility in 1393 bioactive glass scaffold", Materials Science and Engineering C, Vol. 93, pp. 341-355, (2018).
- Zaytsev, D., and Panfilov, P., "Deformation behavior of human enamel under diametral compression", Materials Letters, Vol. 136, pp. 130-132, (2014).
- Horabik, J., Wiącek, J., Parafiniuk, P., Stasiak, P., Bańda, M., and Molenda, M., "Tensile strength of pressure-agglomerated potato starch determined via diametral compression test: Discrete element method simulations and experiments", Biosystems Engineering, Vol. 183, pp. 95-109, (2019).
- Barfi Sistani, P., Mollazadeh Beidokhti, S., and Kiani-Rashid, A., "Crystallization Behavior and Mechanical Properties of In-situ Alumina-Zirconia Composite Bodies", Advanced Ceramics Progress, Vol. 4, No. Issue 3-4, pp. 36–42, (2018).
- Kermani, F., Gharavian, A., Mollazadeh, A., Kargozar, S., Youssefi, A., and Vahdati Khaki, J., "Silicon-doped calcium phosphates; the critical effect of synthesis routes on the biological performance", Materials Science and Engineering C, Vol. 111, pp. 110828, (2020).
- Kokubo, T., and Takadama, H., "How useful is SBF in predicting in vivo bone bioactivity?", Biomaterials, Vol. 27, No. 15, pp. 2907-2915, (2006).
- "CRC handbook of chemistry and physics: 1st student edition: Editor-in-chief: R C Weast. CRC Press, Inc, Boca Raton, Florida and Wolfe Medical Publications, London. 1988. £19.95 ISBN 0-8493-0740-6", Biochemical Education, Vol. 17, No. 2, pp. 103, (1989).
- Kumar, V., Manhas, M., Bedyal, A. K., and Swart, H. C., "Synthesis, spectral and surface investigation of novel CaMgB2O5:Dy3+ nanophosphor for UV based white LEDs", Materials Research Bulletin, Vol. 91, pp. 140-147, (2017).
- Deliormanli, A. M., "In vitro assessment of degradation and mineralisation of V2O5 substituted borate bioactive glass scaffolds", Materials Technology, Vol. 29, No. 6, pp. 358–365, Nov. (2014).
- Jung, S., "Borate Based Bioactive Glass Scaffolds for Hard and Soft Tissue Engineering", (2010).
- Kermani, F., Mollazadeh, S., Kargozar, S., and Vahdati Khakhi, J., "Solution combustion synthesis (SCS) of theranostic ions doped biphasic calcium phosphates; kinetic of ions release in simulated body fluid (SBF) and reactive oxygen species (ROS) generation", Materials Science and Engineering C, Vol. 118, pp. 111533, (2021).
- Gu, Y., Xiao, W., Lu, L., Huang, W., Rahaman, M. N., and Wang, D., "Kinetics and mechanisms of converting bioactive borate glasses to hydroxyapatite in aqueous phosphate solution", Journal of Materials Science, Vol. 46, No. 1, pp. 47-54, (2011).
- Hu Y., and Miao, X., "Comparison of hydroxyapatite ceramics and hydroxyapatite/borosilicate glass composites prepared by slip casting", in Ceramics International, Vol. 30, No. 7, pp. 1787-1791, (2004).
- Rekhi, S., Saxena, S. K., Atlas, Z. D., and Hu, J., "Effect of particle size on the compressibility of MgO", Solid State Communications, Vol. 117, No. 1, pp. 33-36, (2000).
- Gu, Y., Huang, W., Rahaman, M. N., and Day, D. E., "Bone regeneration in rat calvarial defects implanted with fibrous scaffolds composed of a mixture of silicate and borate bioactive glasses", Acta Biomaterialia, Vol. 9, No. 11, pp. 9126-9136, (2013).
- Paupler, P., "G. E. Dieter. Mechanical Metallurgy. 3rd ed., Mc Graw-Hill Book Co., New York 1986. XXIII + 751 p., DM 138.50, ISBN 0–07–016893–8", Crystal Research and Technology, Vol. 23, No. 2, Chap. 8, (1988).
- Haghighi, F. D., Beidokhti, S. M., Najaran, Z. T., and Sahebian Saghi, S., "Highly improved biological and mechanical features of bioglass-ceramic/ gelatin composite scaffolds using a novel silica coverage", Ceramics International, Vol. 47, No. 10, pp. 14048-14061, (2021).
- Liu, X., Rahaman, M. N., and Day, D. E., "Conversion of melt-derived microfibrous borate (13-93B3) and silicate (45S5) bioactive glass in a simulated body fluid", Journal of Materials Science: Materials in Medicine, Vol. 24, No. 3, pp. 583-595, (2013).
- Gu, Y. W., Khor, K. A., and Cheang, P., "Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS)", Biomaterials, Vol. 25, No. 18, pp. 4127-4134, (2004).
- Fathi, M. H., Hanifi, A., and Mortazavi, V., "Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder", Journal of Materials Processing Technology, Vol. 202, No. 1–3, pp. 536–542, (2008)
|