1. Li X., Wang Y. X, Shi P, Liu Y. P, Li T, Liu S. Q, Wang CJ, Wang, LX , Cao Y. Icariin treatment reduces blood glucose levels in type 2 diabetic rats and protects pancreatic function. Experimental & Therapeutic Medicine. 2020; 19(4):2690-96.
2. Fonseca VA. Defining and characterizing the progression of type 2 diabetes. Diabetes care. 2009; 32(suppl 2):S151-S56.
3. Kumar A.A, Satheesh G, Vijayakumar G, Chandran M, Prabhu PR, Simon L, Kutty VR. Chandrasekharan C. Kartha , Abdul Jaleeln et al., Postprandial metabolism is impaired in overweight normoglycemic young adults without family history of diabetes. Scientific Reports. 2020; 10(1):1-13.
4. Parhofer KG. Interaction between glucose and lipid metabolism: more than diabetic dyslipidemia. Diabetes & Metabolism Journal. 2015; 39(5):353-62.
5. Belalcazar LM, Lang W, Haffner SM, Schwenke DC, Kriska A, Balasubramanyam A, Hoogeveen RC, Pi-Sunyer FX, Tracy RP, Ballantyne CM. Improving adiponectin levels in individuals with diabetes and obesity: insights from look AHEAD. Diabetes care. 2015; 38(8):1544-50.
6. Sheng X, Che H, Ji Q, Yang F, Lv J, Wang Y, Xian H, Wang, L. The relationship between liver enzymes and insulin resistance in type 2 diabetes patients with nonalcoholic fatty liver disease. Hormone & Metabolic Research. 2018; 50(05):397-02.
7 . Music M, Dervisevic A, Pepic E, Lepara O, Fajkic A, Ascic-Buturovic B, Tuna E. Metabolic syndrome and serum liver enzymes level at patients with type 2 diabetes mellitus. Medical Archives. 2015; 69(4):251.
8. Idris AS, Mekky KFH, Abdalla BEE, Altom Ali K. Liver function tests in type 2 Sudanese diabetic patients. International Journal of Nutrition and Metabolism. 2011; 3(2):17-21.
9. Pivari F, Mingione A, Brasacchio C, Soldati L. Curcumin and type 2 diabetes mellitus: prevention and treatment. Nutrients. 2019; 11(8):1837.
10. Demmers A, Korthout H, van Etten-Jamaludin FS, Kortekaas F, Maaskant JM. Effects of medicinal food plants on impaired glucose tolerance: A systematic review of randomized controlled trials. Diabetes Research & Clinical Practice. 2017; 131:91-106.
11. Poolsup N, Suksomboon N, Kurnianta PDM, Deawjaroen K. Effects of curcumin on glycemic control and lipid profile in prediabetes and type 2 diabetes mellitus: A systematic review and meta-analysis. PLOS ONE 14(4): e0215840. Doi.org/10.1371/journal.pone.0215840
12. Suksomboon N, Poolsup N, Boonkaew S, Suthisisang CC. Meta-analysis of the effect of herbal supplement on glycemic control in type 2 diabetes. Journal of Ethnopharmacology. 2011; 137(3):1328-33.
13. Daemi A, Farahpour MR, Oryan A, Karimzadeh S, Tajer E. Topical administration of hydroethanolic extract of Lawsonia inermis (henna) accelerates excisional wound healing process by reducing tissue inflammation and amplifying glucose uptake. Kaohsiung Journal of Medical Sciences. 2019; 35(1):24-32.
14. Mirzaei H, Shakeri A, Rashidi B, Jalili A, Banikazemi Z, Sahebkar A. Phytosomal curcumin: A review of pharmacokinetic, experimental and clinical studies. Biomedicine and Pharmacotherapy. 2017; 85:102-12.
15. Derosa G, Maffioli P, Simental-Mendía LE, Bo S, Sahebkar A. Effect of curcumin on circulating interleukin-6 concentrations: a systematic review and meta-analysis of randomized controlled trials. Pharmacological Research. 2016; 111:394-04.
16. Kim HS, Hwang YC, Koo SH, Park KS, Lee MS, Kim KW, Lee MK. PPAR-γ activation increases insulin secretion through the up-regulation of the free fatty acid receptor GPR40 in pancreatic β-cells. PloS One. 2013; 8(1):e50128.
17. Khezri K, Farahpour MR, and Mounesi RS. Accelerated infected wound healing by topical application of encapsulated Rosemary essential oil into nanostructured lipid carriers. Artificial Cells, Nanomedicine, and Biotechnology. 2019; 47(1):980-88.
18. Ghodrati M, Farahpour MR, Hamishehkar H. Encapsulation of Peppermint essential oil in nanostructured lipid carriers: In-vitro antibacterial activity and accelerative effect on infected wound healing. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2019; 564:161-69.
19. Hatamipour M, Sahebkar A, Alavizadeh SH, Dorri M, Jaafari MR. Novel nanomicelle formulation to enhance bioavailability and stability of curcuminoids. Iranian Journal of Basic Medical Sciences. 2019; 22(3):282.
20. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF. Turner RCHomeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985; 28(7):412-19.
21. Gutierres VO, Pinheiro CM, Assis RP, Vendramini RC, Pepato MT, Brunetti IL. Curcumin-supplemented yoghurt improves physiological and biochemical markers of experimental diabetes. British Journal of Nutrition. 2012; 108(3):440-48.
22. Gutierres VO, Assis RP, Arcaro CA, Oliveira JO, Lima TFO, Beretta ALRZ, Costa PI, Baviera AM. Curcumin improves the effect of a reduced insulin dose on glycemic control and oxidative stress in streptozotocin diabetic rats. Phytotherapy Research. 2019; 33(4):976-88.
23. Jain SK, Rains J, Croad J, Larson B, Jones K. Curcumin supplementation lowers TNF-α, IL-6, IL-8, and MCP-1 secretion in high glucose-treated cultured monocytes and blood levels of TNF-α, IL-6, MCP-1, glucose, and glycosylated hemoglobin in diabetic rats. Antioxidants & Redox Signaling. 2009; 11(2):241-49.
24. El-Moselhy MA, Taye A, Sharkawi SS, El-Sisi SF, Ahmed AF. The antihyperglycemic effect of curcumin in high fat diet fed rats. Role of TNF-α and free fatty acids. Food and Chemical Toxicology. 2011; 49(5):1129-40.
25. Na LX, Zhang YL, Li Y, Liu LY, Li R, Kong T, Sun CH. Curcumin improves insulin resistance in skeletal muscle of rats. Nutrition, Metabolism & Cardiovascular Diseases. 2011; 21(7):526-33.
26. Kaur G. Amelioration of obesity, glucose intolerance, and oxidative stress in high-fat diet and low-dose streptozotocin-induced diabetic rats by combination consisting of “curcumin with piperine and quercetin”. ISRN Pharmacology, 2012:957283.
27. Lu X, Wu F, Jiang M, Sun X, Tian G. Curcumin ameliorates gestational diabetes in mice partly through activating AMPK. Pharmaceutical Biology. 2019; 57(1):250-54.
28. Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Molecular Pharmaceutics. 2007; 4(6):807-18.
29. Ismail NA, AbdEl Dayem SM, Salama E, Ragab S, Abd El Baky AN, Ezza WM .Impact of curcumin intake on gluco-insulin homeostasis, leptin and adiponectin in obese subjects. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2016; 7(1):1891-97.
30. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy. 2017; 2(1):17023.
31. Rahimi HR, Mohammadpour AH, Dastani M, Jaafari MR, Abnous K, Ghayour Mobarhan M, Kazemi Oskuee R. The effect of nano-curcumin on HbA1c, fasting blood glucose, and lipid profile in diabetic subjects: a randomized clinical trial. Avicenna Journal of Phytomedicine. 2016; 6(5):567.
32. Wilson RD, Islam MS, Fructose-fed streptozotocin-injected rat: an alternative model for type 2 diabetes. Pharmacological Reports. 2012; 64(1):129-39.
33. Reed MJ, Meszaros K, Entes LJ, Claypool MD, Pinkett JG, Gadbois TM, Reaven GM. A new rat model of type 2 diabetes: the fat-fed, streptozotocin-treated rat. Metabolism: Clinical and Experimental. 2000; 49(11):1390-94.
34. Dupas J, Goanvec C, Feray A, Guernec A, Alain C, Guerrero F, Mansourati J. Progressive induction of type 2 diabetes: effects of a reality–like fructose enriched diet in young Wistar rats. PLoS One. 2016; 11(1):e0146821.
35. Hodaei H, Adibian M, Nikpayam O, Hedayati M, Sohrab G. The effect of curcumin supplementation on anthropometric indices, insulin resistance and oxidative stress in patients with type 2 diabetes: A randomized, double-blind clinical trial. Diabetology & Metabolic Syndrome. 2019; 11(1):1-8.