- Afzalzadeh, A., Sharifi, S. D., Absalan, M., Khadem, A., & Ghandi, D. (2013). Effect of whole cottonseed feeding on feedlot performance and morphological characteristics of small intestine in Chaal male lambs. Iranian Journal of Animal Science, 43(4), 457-464. (In Persian). https://doi.org/10.22059/ijas.2013.30266
- Aschenbach, J. R., Zebeli, Q., Patra, A. K., Greco, G., Amasheh, S., & Penner, G. B., (2019). Symposium review: The importance of the ruminal epithelial barrier for a healthy and productive cow. Journal of Dairy Science, 102(2), 1866-1882. 3168/jds.2018-15243
- Attaix, D., & Meslin, J. C. (1991). Changes in small intestinal mucosa morphology and cell renewal in suckling, prolonged-suckling, and weaned lambs. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 261(4), 811-818. 1152/ajpregu.1991.261.4.R811
- De Barbieri, I., Hegarty, R. S., Silveira C., Gulino, L. M., Oddy, V. H., Gilbert, R. A., Klieve, A. V., & Ouwerkerk, D. (2015). Programming rumen bacterial communities in newborn Merino lambs. Small Ruminant Research, 129, 48–59. https://doi.org/10.1016/j.smallrumres.2015.05.015.
- DeClerck, J. C., Wade, Z. E., Reeves, N. R., Miller, M. F., Johnson, B. J., Ducharme, G. A., & Rathmann, R. J. (2020). Influence of Megasphaera elsdenii and feeding strategies on feedlot performance, compositional growth, and carcass parameters of early weaned, beef calves. Translational Animal Science, 4(2), 863-75. https://doi.org/10.1093/tas/txaa031
- Diao, Q., Zhang, R., & Fu, T. (2019). Review of strategies to promote rumen development in calves. Animals, 9(8), 490. 3390/ani9080490
- Erdman, R. A., Botts, R. L., Hemken, R.W. & Bull, L.S. (1980). Effect of dietary sodium bicarbonate and magnesium oxide on production and physiology in early lactation. Journal of Dairy Science, 63(6), 923-930. https://doi.org/10.3168/jds.S0022-0302(80)83027-X
- Garcia Diaz, T., Ferriani Branco, A., Jacovaci, F. A., Cabreira, C., Jobim Bolson, D. C., & Pratti Daniel, J. L. (2018). Inclusion of live yeast and mannan-oligosaccharides in high grain-based diets for sheep: Ruminal parameters, inflammatory response and rumen morphology. PloS One, 13(2), e0193313. https://doi.org/10.1371/journal.pone.0193313
- Jayaraman, S., Thangavel, G., Kurian, H., Mani, R., Mukkalil, R., & Chirakkal, H. (2013). Bacillus subtilis PB6 improves intestinal health of broiler chickens challenged with Clostridium perfringens-induced necrotic enteritis. Poultry Science, 92(2), 370-374. https://doi.org/10.3382/ps.2012-02528
- Khorasani,, Chaji, M., & Baghban, F. (2020). Comparison of the effect of sodium bicarbonate buffer with Megasphaera elsdenii as a rumen-consuming acid on growth performance, digestibility, rumen and blood parameters of lambs in high concentrate. Journal of Animal Science Researches, 30(2), 85-99. (In Persian).
- Khorasani,, Chaji, M., & Baghban, F. (2021). Effect of chemical buffer and Megasphaera elsdenii-yeast on histomorphometry and histopathology of rumen and liver of Arabian fattening lambs fed with concentrated diets. Animal Production, 23(1), 47-59. (In Persian). https://doi.org/10.22059/jap.2021.307867.623553
- Krause, K. M., & Oetzel, G. R. (2006). Understanding and preventing subacute ruminal acidosis in dairy herds: A review. Animal Feed Science and Technology, 126(3-4), 215-236. https://doi.org/10.1016/j.anifeedsci.2005.08.004
- Lechartier, C., & Peyraud, J. L. (2011). The effects of starch and rapidly degradable dry matter from concentrate on ruminal digestion in dairy cows fed corn silage-based diets with fixed forage proportion. Journal of Dairy Science, 94(5), 2440-2454. https://doi.org/10.3168/jds.2010-3285
- Lei, X., Piao, X., Ru, Y., Zhang, H., Péron, A., & Zhang, H. (2015). Effect of Bacillus amyloliquefaciens-based direct-fed microbial on performance, nutrient utilization, intestinal morphology and cecal microflora in broiler chickens. Asian-Australasian Journal of Animal Sciences, 28(2), 239-246. 5713/ajas.14.0330
- Li, G. H., Ling, B. M., Qu, M. R., You, J. M., & Song, X. Z. (2011). Effects of several oligosaccharides on ruminal fermentation in sheep: an in vitroRevue de Medecine Veterinaire, 162, 192-197.
- Malekkhahi, M., Tahmasbi, A. M., Naserian, A. A., Danesh-Mesgaran, M., Kleen, J. L., Al-Zahal, O., & Ghaffari, M. H. (2016). Effects of supplementation of active dried yeast and malate during sub-acute ruminal acidosis on rumen fermentation, microbial population, selected blood metabolites, and milk production in dairy cows. Animal Feed Science and Technology, 213, 29-43. https://doi.org/10.1016/j.anifeedsci.2015.12.018
- Mashayekhi, R., Erfani-majd, N., Sari, M., & Rezaei, M. (2020). Investigating the effects of slow-release urea and molasses on histomorphometric tissue of rumen and abomasum and rumen fermentation parameters of fattening lamb. Iranian Veterinary Journal, 16(1), 82-93. (In Persian). 10.22055/IVJ.2019.151750.2077
- Mohammadabadi, T., Bakhtiari, M. A., & Alimirzaei, P. (2018). Isolation and identification of lactate-producing and utilizing bacteria from the rumen of najdi goats. Indian Journal of Small Ruminants, 24(2), 276-280. 5958/0973-9718.2018.00056.9
- NRC. (2007). Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids and New World Camelids. National Academy Press Washington DC.
- Odongo, N. E., AlZahal, O., Lindinger, M. I., Duffield, T. F., Valdes, E. V., Terrell, S. P., & McBride, B. W. (2006). Effects of mild heat stress and grain challenge on acid-base balance and rumen tissue histology in lambs. Journal of Animal Science, 84(2), 447-455. 2527/2006.842447x
- Pinloche, E., McEwan, N., Marden, J. P., Bayourthe, C., Auclair, E., & Newbold, C. J. (2013). The effects of a probiotic yeast on the bacterial diversity and population structure in the rumen of cattle. PloS One, 8(7), e67824.
- Prabhu, R., Altman, E., & Eiteman, M. A. (2012). Lactate and acrylate metabolism by Megasphaera elsdenii under batch and steady-state conditions. Applied and Environmental Microbiology, 78, 8564-8570. https://doi.org/10.1371/journal.pone.0067824
- Rose, B. D. (1989). Clinical physiology of acid-base and electrolyte disorders, 3rd Mc Grow Hill Inc. Singapore, 261-268: 478- 501
- Sedighi, R., & Alipour, D. (2019). Assessment of probiotic effects of isolated Megasphaera elsdenii strains in Mehraban sheep and Holstein lactating cows. Animal Feed Science and Technology, 248, 126-131. https://doi.org/10.1016/j.anifeedsci.2019.01.007
- Steele, M. A., Penner, G. B., & Chaucheyras-Durand, F. (2016). Development and physiology of the rumen and the lower gut: Targets for improving gut health. Journal of Dairy Science, 99(6), 4955-4966. 3168/jds.2015-10351
- Stone, W.C. (2004). Nutritional approaches to minimize subacute ruminal acidosis and laminitis in dairy cattle. Journal of Dairy Science, 87, 13–26. https://doi.org/10.3168/jds.S0022-0302(04)70057-0
- Strusińska, D., Minakowski, D., Bomba, G., Otrocka-Domagała, I., Wiśniewska, M., & Tywończuk, J. (2009). Effect of whole cereal grains contained in the ration on calf performance and selected morphometric parameters of the rumen and small intestine. Czech Journal of Animal Science, 54(12), 540-551. 17221/133/2009-CJAS
- Vi, R. B., McLeod, K. R., Klotz, J. L., & Heitmann, N. (2004). Rumen development, intestinal growth and hepatic metabolism in the pre-and postweaning ruminant. Journal of Dairy Science, 87, 55-65. https://doi.org/10.3168/jds.S0022-0302(04)70061-2
- Wang, Y. H., Xu, M., Wang, F. N., Yu, Z. P., Yao, J. H., Zan, L. S., & Yang, F. X. (2009). Effect of dietary starch on rumen and small intestine morphology and digesta pH in goats. Livestock Science, 122(1), 48-52. https://doi.org/10.1016/j.livsci.2008.07.024
- Yáñez-Ruiz, D. R., Macías, B., Pinloche, E., & Newbold, C. J. (2010). The persistence of bacterial and methanogenic archaeal communities residing in the rumen of young lambs. FEMS Microbiology Ecology, 72(2), 272–278. 1111/j.1574-6941.2010.00852.x
|