- Alavipanah, K. (2015). Application of remote sensing in earth sciences (Soil sciences). University of Tehran Press: Tehran. (In Persian). https://press.ut.ac.ir/book_765_2640.html.
- Asming, M.A., Ibrahim, A.M., & Abir, I.M. (2022). Processing and classification of landsat and sentinel images for oil palm plantation detection. Remote Sensing Applications: Society and Environment 26: 100747. https://doi.org/10.1016/j.rsase.2022.100747.
- Cabaneros, S.M., Calautit, J.K., & Hughes, B.R. (2019). A review of artificial neural network models for ambient air pollution prediction. Environmental Modelling and Software 119: 285-304. https://doi.org/10.1016/j.envsoft.2019.06.014.
- Chanu, C.S., Elango, L., & Shankar, G.R. (2021). A geospatial approach for assessing the relation between changing land use/land cover and environmental parameters including land surface temperature of Chennai metropolitan city, India. Arabian Journal of Geosciences 14(2): 1-16. https://doi.org/10.1007/s12517-020-06409-0.
- Chen, Y., Lu, D., Moran, E., Batistella, M., Dutra, L.V., Sanches, I., Da Silva, R., Huang, J., Luiz, A.J., & De Oliveira, M. (2018). Mapping croplands, cropping patterns, and crop types using MODIS time series data, Journal of Applied Earth Observation and Geoinformation 69: 133-147. https://doi.org/10.1016/j.jag.2018.03.005.
- Deng, X., & Gibson, J. (2019). Improving eco-efficiency for the sustainable agricultural production: A case study in Shandong, China, Technological Forecasting and Social Change 144: 394-400. https://doi.org/10.1016/j.techfore.2018.01.027.
- Derksen, D., Inglada, J., & Michel, J. (2020). Geometry aware evaluation of handcrafted superpixel-based features and convolutional neural networks for land cover mapping using satellite imagery. Remote Sensing 12(3): 513. https://doi.org/10.3390/rs12030513.
- Dong, Q., Liu, J., Wang, L., Chen, Z., & Gallego, J. (2017). Estimating crop area at county level on the North China Plain with an indirect sampling of segments and an adapted regression estimator. Sensors 17(11): 2638. https://doi.org/10.3390/s17112638.
- Ebodé, V., Braun, J.J., Nnomo, B.N., Mahé, G., Nkiaka, E., & Riotte, J. (2022). Impact of rainfall variability and land use change on river discharge in South Cameroon. Water 14(6): 941. https://doi.org/10.3390/w14060941.
- Garain, S., Mitra, D., & Das, P. (2021). Mapping hydrocarbon microseepage prospect areas by integrated studies of Aster processing, geochemistry and geophysical surveys in Assam-Arakan Fold Belt, NE India. Applied Earth Observation and Geoinformation 102: 102432. https://doi.org/10.1016/j.jag.2021.102432.
- García, J.A., Ouhbi, S., Benmouna, B., Garcia-Mateos, G., Fernández-Alemán, J.L., & Molina-Martínez, J.M. (2020). Systematic mapping study on remote sensing in agriculture, Applied Sciences 10(10): 1-29. https://doi.org/10.3390/app10103456.
- Gonzalez, F.A., Vuelvas, J., Correa, C.A., Vallejo, V.E., & Patino, D. (2022). Machine learning and remote sensing techniques applied to estimate soil indicators, Review. Ecological Indicators 135: 108517. https://doi.org/10.1016/j.ecolind.2021.108517.
- Hedayati, A., Vahidnia, M.H., & Behzadi, S. (2022). Paddy lands detection using Landsat-8 satellite images and object-based classification in Rasht City, Iran. Remote Sensing & Space Science 25(1): 73-84. https://doi.org/10.1016/j.ejrs.2021.12.008.
- Huang, S., Tang, L., Hupy, J.P., Wang, Y., & Shao, G. (2021). A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. Forestry Research 32(1): 1-6. https://doi.org/10.1007/s11676-020-01155-1.
- Hudait, M., & Patel, P.P. (2022). Crop-type mapping and acreage estimation in smallholding plots using Sentinel-2 images and machine learning algorithms: Some comparisons. Remote Sensing and Space Science 25(1): 147-156. https://doi.org/10.1016/j.ejrs.2022.01.004.
- Jain, D.K., Dubey, S.B., Choubey, R.K., Sinhal, A., Arjaria, S.K., Jain, A., & Wang, H. (2018). An approach for hyperspectral image classification by optimizing SVM using self organizing map. Computational Science 25: 252-259. https://doi.org/10.1016/j.jocs.2017.07.016.
- Khodakarami, L., & Soffianian, A. (2012). Application of multi temporal remote sensing for precision farming. Water and Soil Science 16(59): 215-231. (In Persian with English abstract) 1001.1.24763594.1391.16.59.16.9.
- Khuzestan Organization Agricultural-Jihad. (2019). Crop statistics of Khuzestan Province in 2019-2020.
- Kim, D., Kang, S., and Cho, S. 2020. Expected margin-based pattern selection for support vector machines. Expert Systems with Applications 139: 112865. https://doi.org/10.1016/j.eswa.2019.112865.
- Kundu, A., Denis, D.M., Patel, N.R., & Dutta, D. (2018). A Geo‐spatial study for analysing temporal responses of NDVI to rainfall. Tropical Geography 39(1): 107-116. https://doi.org/10.1111/sjtg.12217.
- Li, P., Jiang, L., & Feng, Z. (2013). Cross-comparison of vegetation indices derived from Landsat-7 enhanced thematic mapper plus (ETM+) and Landsat-8 operational land imager (OLI) sensors. Remote Sensing 6(1): 310-329. https://doi.org/10.3390/rs6010310.
- Liaqat, M.U., Cheema, M.J.M., Huang, W., Mahmood, T., Zaman, M., & Khan, M. (2017). Evaluation of MODIS and Landsat multiband vegetation indices used for wheat yield estimation in irrigated Indus Basin. Computers and Electronics in Agriculture 138: 39-47. https://doi.org/10.1016/j.compag.2017.04.006.
- Lyons, M.B., Keith, D.A., Phinn, S.R., Mason, T.J., & Elith, J. (2018). A comparison of resampling methods for remote sensing classification and accuracy assessment. Remote Sensing of Environment 208: 145-153. https://doi.org/10.1016/j.rse.2018.02.026.
- Manickam, L., Subramanian, D., Khandal, S., & Hegde, R. (2021). Modeling and mapping of salt-affected soils through spectral indices in land plains of semi-arid agro-scological region. Indian Society of Remote Sensing 49(6): 1475-1481. https://doi.org/10.1007/s12524-021-01321-w.
- Martínez, J.B.G., Brown, M.M., Christodoulou, X., Alvarado, K.A., & Denkenberger, D.C. (2021). Potential of microbial electrosynthesis for contributing to food production using CO2 during global agriculture inhibiting disasters, Cleaner Engineering and Technology 4: 1-10. https://doi.org/10.1016/j.clet.2021.100139.
- Martínez2021, M., Ogando-Martínez, A., Troncoso-Pastoriza, F., López-Gómez, J., Febrero-Garrido, L., & Granada-Álvarez, E. (2021). Use of optimised MLP neural networks for spatiotemporal estimation of indoor environmental conditions of existing buildings. Building and Environment 205: 108243. https://doi.org/10.1016/j.buildenv.2021.108243.
- Mirzaei, M., Jafari, A., Gholamalifard, M., Azadi, H., Shooshtari, S.J., Moghaddam, S.M., Gebrehiwot, K., & Witlox, F. (2020). Mitigating environmental risks: Modeling the interaction of water quality parameters and land use cover. Land Use Policy 95: 103766. https://doi.org/10.1016/j.landusepol.2018.12.014.
- Moussavi, S.A., Abbaszadeh Tehrani, N., & Janalipour, M. (2020). Estimation of wheat area cultivation using Sentinel 2 satellite images, Case study: Sojasroud Region, Khodabandeh City, Zanjan Province. Environmental Research and Technology 7(7): 77-90. https://doi.org/10.29252/.5.7.77.
- Ouzemou, J.E., El Harti, A., Lhissou, R., El Moujahid, A., Bouch, N., El Ouazzani, R., El Mostafa, B., & El Ghmari, A. (2018). Crop type mapping from pansharpened Landsat 8 NDVI data: A case of a highly fragmented and intensive agricultural system. Remote Sensing Applications: Society and Environment 11: 94-103. https://doi.org/10.1016/j.rsase.2018.05.002.
- Pageot, Y., Baup, F., Inglada, J., Baghdadi, N., & Demarez, V. (2020). Detection of irrigated and rainfed crops in temperate areas using Sentinel-1 and Sentinel-2 time series. Remote Sensing 12(18): 3044. https://doi.org/10.3390/rs12183044.
- Parmar, J., Das, P., & Dave, S.M. (2021). A machine learning approach for modelling parking duration in urban land-use. Physica A: Statistical Mechanics and its Applications 572: 125873. https://doi.org/10.1016/j.physa.2021.125873.
- Paudel, D., Boogaard, H., de Wit, A., Janssen, S., Osinga, S., Pylianidis, C., & Athanasiadis, I.N. (2021). Machine learning for large-scale crop yield forecasting. Agricultural Systems 187: 103016. https://doi.org/10.1016/j.agsy.2020.103016.
- Phan, P., Chen, N., Xu, L., & Chen, Z. (2020). Using multi-temporal MODIS NDVI data to monitor tea status and forecast yield: A case study at Tanuyen, Laichau, Vietnam. Remote Sensing 12(11): 1814. https://doi.org/10.3390/rs12111814.
- Poursanidis, D., Topouzelis, K., & Chrysoulakis, N. (2018). Mapping coastal marine habitats and delineating the deep limits of the Neptune’s seagrass meadows using very high resolution Earth observation data. Remote Sensing 39(23): 8670-8687. https://doi.org/10.1080/01431161.2018.1490974.
- Ramírez, J.C., Restrepo-Girón, A.D., & Nope-Rodríguez, S.E. (2019). Detection of internal defects in carbon fiber reinforced plastic slabs using background thermal compensation by filtering and support vector machines. Nondestructive Evaluation 38(1): 1-11. https://doi.org/10.1007/s10921-019-0569-6.
- Razaque, A., Benhajfrej, M., Almiani, M., Alotaibi, M., & Alotaibi, B. (2021). Improved support vector machine enabled radial basis function and linear variants for remote sensing image classification. Sensors 21(13): 4431. https://doi.org/10.3390/s21134431.
- Riahi, V., Zeaiean, P., Azizpour, F., & Darouei, P. (2019). Identification and investigation of the area under cultivation in Lenjanat using Landsat 8 satellite images. Applied Researches in Geographical Sciences 19(52): 147-169. (In Persian with English abstract) https://doi.org/29252/jgs.19.52.147.
- Rienow, A., Mustafa, A., Krelaus, L., & Lindner, C. (2021). Modeling urban regions: Comparing random forest and support vector machines for cellular automata. Transactions in GIS 25(3): 1625-1645. https://doi.org/10.1111/tgis.12756.
- Roznik, M., Boyd, M., & Porth, L. (2022). Improving crop yield estimation by applying higher resolution satellite NDVI imagery and high-resolution cropland masks. Remote Sensing Applications: Society and Environment 25: 100693. https://doi.org/10.1016/j.rsase.2022.100693.
- Solano-Correa, Y.T., Bovolo, F., & Bruzzone, L. (2018). An approach for unsupervised change detection in multitemporal VHR images acquired by different multispectral sensors. Remote Sensing 10(4): 533. https://doi.org/10.3390/rs10040533.
- Teffera, Z.L., Li, J., Debsu, T.M., & Menegesha, B.Y. (2018). Assessing land use and land cover dynamics using composites of spectral indices and principal component analysis: A case study in middle Awash subbasin, Ethiopia. Applied Geography 96:109-129. https://doi.org/10.1016/j.apgeog.2018.05.015.
- Tomala, A.S, Raczko, E., & Zagajewski, B. (2020). Comparison of support vector machine and random forest algorithms for invasive and expansive species classification using airborne hyperspectral data. Remote Sensing 12(3): 516. https://doi.org/10.3390/rs12030516.
- Van-Klompenburg, T., Kassahun, A., & Catal, C. (2020). Crop yield prediction using machine learning: A systematic literature review. Computers and Electronics in Agriculture 177: 105709. https://doi.org/10.1016/j.compag.2020.105709.
- Verma, P., Raghubanshi, A., Srivastava, P.K., & Raghubanshi, A.S. (2020). Appraisal of kappa-based metrics and disagreement indices of accuracy assessment for parametric and nonparametric techniques used in LULC classification and change detection. Modeling Earth Systems and Environment 6(2): 1045-1059. https://doi.org/10.1007/s40808-020-00740-x.
- Viana, C.M., Freire, D., Abrantes, P., Rocha, J., & Pereira, P. (2022). Agricultural land systems importance for supporting food security and sustainable development goals: A systematic review. Science of The Total Environment 806: 150718. https://doi.org/10.1016/j.scitotenv.2021.150718.
- Wang, F., Qin, Z., Song, C., Tu, L., Karnieli, A., & Zhao, S. (2015). An improved mono-window algorithm for land surface temperature retrieval from Landsat 8 thermal infrared sensor data. Remote Sensing 7(4): 4268-4289. https://doi.org/10.3390/rs70404268.
- Wang, K., Cheng, L., & Yong, B. (2020). Spectral similarity based kernel of SVM for hyperspectral image classification. Remote Sensing 12(13): 2154. https://doi.org/10.3390/rs12132154.
- Wang, M., Wander, M., Mueller, S., Martin, N., & Dunn, J.B. (2022). Evaluation of survey and remote sensing data products used to estimate land use change in the United States: Evolving issues and emerging opportunities, Environmental Science and Policy 129: 68-78. https://doi.org/10.1016/j.envsci.2021.12.021.
- Yepez, S., Laraque, A., Martinez, J.M., De Sa, J., Carrera, J.M., Castellanos, B., Gallay., M., & Lopez, J.L. (2018). Retrieval of suspended sediment concentrations using Landsat-8 OLI satellite images in the Orinoco River, Venezuela. Comptes Rendus Geoscience 350(1-2): 20-30. https://doi.org/10.1016/j.crte.2017.08.004.
- Yi, Z., Jia, L., & Chen, Q. (2020). Crop classification using multi-temporal Sentinel-2 data in the Shiyang River Basin of China. Remote Sensing 12(24): 4052. https://doi.org/10.3390/rs12244052.
- Zafari, A., Zurita-Milla, R., & Izquierdo-Verdiguier, E. (2019). Evaluating the performance of a random forest kernel for land cover classification. Remote Sensing 11(5): 575. https://doi.org/10.3390/rs11050575.
- Zare, M., Drastig, K., & Zude-Sasse, M. (2020). Tree water status in apple orchards measured by means of land surface temperature and vegetation index (LST-NDVI) trapezoidal space derived from Landsat 8 satellite images. Sustainability 12(1): 70. https://doi.org/10.3390/su12010070.
- Zhang, H., Li, Q., Liu, J., Shang, J., Du, X., Zhao, L., Wang, N., & Dong, T. (2017). Crop classification and acreage estimation in North Korea using phenology features. GIScience & Remote Sensing 54(3): 381-406. https://doi.org/10.1080/15481603.2016.1276255.
- Zhang2019, L., Liu, Z., Liu, D., Xiong, Q., Yang, N., Ren, T., Zhang, C., Zhang, X., & Li, S. (2019). Crop mapping based on historical samples and new training samples generation in Heilongjiang Province, China. Sustainability 11(18): 5052. https://doi.org/10.3390/su11185052.
- Ziaiean, P., Bidhendi, S.L., & Eskandari Nodeh, M. (2010). Mapping and acreage estimating of rice agricultural land using radarsat a satellite images. Physical Geography Research Quarterly 41(68): 45-58. (In Persian with English abstract) https://jphgr.ut.ac.ir/article_21495.html?lang=fa.
|