[1] A. H. Rezaie Farie, and A. A. Ehterami, “Study of mechanized tunnel boring machines performance in urban areas,” New Approaches in Civil Engineering, vol. 1, no. 2, pp. 14-30, 2018.
[2] G. Barzegari, and A. Uromeihy, “Study of soil abrasivity impact on TBM tunnelling efficiency at the Tabriz metro L1,” Journal of Mining Engineering, vol. 10, no. 29, pp. 67-79, 2016, (In Persian).
[3] G. Barzegari, A. Uromeihy, and J. Zhao, “Parametric study of soil abrasivity for predicting wear issue in TBM tunneling projects,” Tunnelling and Underground Space Technology, vol. 48, pp. 43-57, 2015.
[4] K. Thuro, J. Singer, H. Käsling, and M. Bauer, “Soil abrasivity assessment using the LCPC testing device,” Felsbau, vol. 24, no. 6, pp. 37-45, 2006.
[5] K. Thuro, and R. Plinninger, “Hard Rock Tunnel Boring, Cutting, Drilling and Blasting: Rock Parameters For Excavatability,” In 10th ISRM Congress, (2003).
[6] R. J. Plinninger, “Klassifizierung und Prognose von Werkzeugverschleiß bei konventionellen Gebirgslösungsverfahren im Festgestein,” 2002.
[7] K. Thuro, J. Singer, H. Kasling, and M. Bauer, “Determining Abrasivity With The LCPC Test,” In 1st Canada-US Rock Mechanics Symposium, (2007).
[8] P. Drucker, “Validity of the LCPC abrasivity coefficient through the example of a recent Danube gravel/Aussagekraft des LCPC‐Abrasivitätskoeffizienten am Beispiel eines rezenten Donauschotters,” Geomechanics and Tunnelling, vol. 4, no. 6, pp. 681-691, 2011.
[9] H. Hashemnejad, M. Ghafoori, G. R. Lashkaripour, and S. T. Azali, “Effect of geological parameters on soil abrasivity using LCPC machine for predicting LAC,” International Journal of Emerging Technology and Advanced Engineering, vol. 2, no. 12, pp. 71-76, 2012.
[10] S. Kahraman, M. Fener, H. Käsling, and K. Thuro, “The influences of textural parameters of grains on the LCPC abrasivity of coarse-grained igneous rocks,” Tunnelling and Underground Space Technology, vol. 58, pp. 216-223, 2016.
[11] J. Küpferle, A. Röttger, W. Theisen, and M. Alber, “The RUB tunneling device- A newly developed test method to analyze and determine the wear of excavation tools in soils,” Tunnelling and Underground Space Technology, vol. 59, pp. 1-6, 2016.
[12] P. D. Jakobsen, M. T. Hamzaban, and N. Rish Sefid Mohammadi, “The effect of the particle size distribution curve on the abrasivity of non-cohesive soils in LCPC test,” Tunnelling and Underground Space Technology, vol. 105, 2020.
[13] H. Lee, D. Kim, D. Shin, J. Oh, and H. Choi, “Effect of foam conditioning on performance of EPB shield tunnelling through laboratory excavation test,” Transportation Geotechnics, vol. 32, 2022.
[14] Z. Chen, A. Bezuijen, Y. Fang, K. Wang, and R. Deng, “Experimental study and field validation on soil clogging of EPB shields in completely decomposed granite,” Tunnelling and Underground Space Technology, vol. 120, 2022.
[15] J. Küpferle, et al., “Influence of the slurry-stabilized tunnel face on shield TBM tool wear regarding the soil mechanical changes–Experimental evidence of changes in the tribological system,” Tunnelling and Underground Space Technology, vol. 74, pp. 206-216, 2018.
[16] J. Düllmann, Ingenieurgeologische untersuchungen zur optimierung von Leistungs-und verschleißprognosen bei hydroschildvortrieben im lockergestein. Ruhr-Universität Bochum, 2014.
[17] G. Barzegari, and A. Uromeihy, “Evaluation of soil abrasiveness in mechanized tunneling with special attitude to the Tabriz metro line1,” Engineering Geology, vol. 5, no. 1, pp. 41-58, 2012, (In Persian).
[18] B. M. Das, and K. Sobhan, Eds., Principles of Geotechnical Engineering. Cengage Learning, 2017.
[19] W. B. Fuller, and S. E., Thompson, “The laws of proportioning concrete,” Transactions of the American Society of Civil Engineers, vol. 59, no. 2, pp. 67-143, 1907.
[20] A. N. Talbot, H. A. Brown, and F. E. Richart, “The strength of concrete: its relation to the cement aggregates and water,” University of Illinois, no. 137-138, 1923.
[21] B. Martineau, “Formulation of a general gradation curve and its transformation to equivalent sigmoid form to represent grain size distribution,” Road Materials and Pavement Design, vol. 18, no. 1, pp. 199-207, 2017.
[22] AFNOR P18-579, Aggregates. Abrasiveness and grindability test /Essai d’ abrasivite’ et de broyabilite. Association Francaise de Normalisation, 1990.
[23] E. A. Gharahbagh, J. Rostami, and A. Palomino, “New soil abrasion testing method for soft ground tunneling applications,” Tunnelling and Underground Space Technology, vol. 26, no. 5, pp. 604-613, 2011.
[24] ASTM D422-63, Standard Test Method for Particle-Size Analysis of Soils. ASTM International, West Conshohocken: PA, 2007.